Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(46): 19425-19437, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767710

RESUMO

Muraymycins are peptidyl nucleoside antibiotics that contain two Cß-modified amino acids, (2S,3S)-capreomycidine and (2S,3S)-ß-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2S,3S)-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by Cß-hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe2+- and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe2+- and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific Cß hydroxylation of the Leu residue to generate (2S,3S)-ß-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-Cß-hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.


Assuntos
Arginina/metabolismo , Produtos Biológicos/metabolismo , Leucina/metabolismo , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Arginina/química , Produtos Biológicos/química , Leucina/química , Estrutura Molecular , Peptídeo Sintases/química , Peptídeos/química
2.
J Org Chem ; 78(17): 8915-21, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23915281

RESUMO

Although the [2,3]-Wittig and Wittig-Still rearrangements have long been known, their application in the generation of quaternary carbon centers in carbocyclic ring systems is sparse. Model studies utilizing this strategy and possible mechanisms are discussed herein. Unprecedented examples of an α-elimination pathway from stannylmethyl allyl ethers as a major undesired product in some Wittig-Still rearrangements are reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA