Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1355153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426094

RESUMO

Cytomegalovirus (CMV) infection is the most critical infectious complication in recipients of hematopoietic cell transplantation (HCT) in the period between a therapeutic hematoablative treatment and the hematopoietic reconstitution of the immune system. Clinical investigation as well as the mouse model of experimental HCT have consistently shown that timely reconstitution of antiviral CD8 T cells is critical for preventing CMV disease in HCT recipients. Reconstitution of cells of the T-cell lineage generates naïve CD8 T cells with random specificities among which CMV-specific cells need to be primed by presentation of viral antigen for antigen-specific clonal expansion and generation of protective antiviral effector CD8 T cells. For CD8 T-cell priming two pathways are discussed: "direct antigen presentation" by infected professional antigen-presenting cells (pAPCs) and "antigen cross-presentation" by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Current view in CMV immunology favors the cross-priming hypothesis with the argument that viral immune evasion proteins, known to interfere with the MHC class-I pathway of direct antigen presentation by infected cells, would inhibit the CD8 T-cell response. While the mode of antigen presentation in the mouse model of CMV infection has been studied in the immunocompetent host under genetic or experimental conditions excluding either pathway of antigen presentation, we are not aware of any study addressing the medically relevant question of how newly generated naïve CD8 T cells become primed in the phase of lympho-hematopoietic reconstitution after HCT. Here we used the well-established mouse model of experimental HCT and infection with murine CMV (mCMV) and pursued the recently described approach of up- or down-modulating direct antigen presentation by using recombinant viruses lacking or overexpressing the central immune evasion protein m152 of mCMV, respectively. Our data reveal that the magnitude of the CD8 T-cell response directly reflects the level of direct antigen presentation.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Camundongos , Animais , Citomegalovirus , Apresentação de Antígeno , Evasão da Resposta Imune , Linfócitos T CD8-Positivos , Proteínas Virais/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
2.
Med Microbiol Immunol ; 201(4): 527-39, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22972232

RESUMO

Reactivation of latent cytomegalovirus (CMV) in the transient state of immunodeficiency after hematopoietic cell transplantation (HCT) is the most frequent and severe viral complication endangering leukemia therapy success. By infecting the bone marrow (BM) stroma of the transplantation recipient, CMV can directly interfere with BM repopulation by the transplanted donor-derived hematopoietic cells and thus delay immune reconstitution of the recipient. Cytopathogenic virus spread in tissues can result in CMV disease with multiple organ manifestations of which interstitial pneumonia is the most feared. There exists a 'window of risk' between hematoablative treatment and reconstitution of antiviral immunity after HCT, whereby timely reconstitution of antiviral CD8 T cells is a recognized positive prognostic parameter for the control of reactivated CMV infection and prevention of CMV disease. Supplementation of endogenous reconstitution by adoptive cell transfer of 'ready-to-go' effector and/or memory virus epitope-specific CD8 T cells is a therapeutic option to bridge the 'window of risk.' Preclinical research in murine models of CMV disease has been pivotal by providing 'proof of concept' for a benefit from CD8 T-cell therapy of HCT-associated CMV disease (reviewed in Holtappels et al. Med Microbiol Immunol 197:125-134, 2008). Here, we give an update of our previous review with focus on parameters that determine the efficacy of adoptive immunotherapy of CMV infection by antiviral CD8 T cells in the murine model.


Assuntos
Transferência Adotiva , Infecções por Citomegalovirus/terapia , Animais , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Camundongos , Resultado do Tratamento
3.
Med Microbiol Immunol ; 201(4): 551-66, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22991040

RESUMO

Low public awareness of cytomegalovirus (CMV) results from the only mild and transient symptoms that it causes in the healthy immunocompetent host, so that primary infection usually goes unnoticed. The virus is not cleared, however, but stays for the lifetime of the host in a non-infectious, replicatively dormant state known as 'viral latency'. Medical interest in CMV results from the fact that latent virus can reactivate to cytopathogenic, tissue-destructive infection causing life-threatening end-organ disease in immunocompromised recipients of solid organ transplantation (SOT) or hematopoietic cell transplantation (HCT). It is becoming increasingly clear that CMV latency is not a static state in which the viral genome is silenced at all its genetic loci making the latent virus immunologically invisible, but rather is a dynamic state characterized by stochastic episodes of transient viral gene desilencing. This gene expression can lead to the presentation of antigenic peptides encoded by 'antigenicity-determining transcripts expressed in latency (ADTELs)' sensed by tissue-patrolling effector-memory CD8 T cells for immune surveillance of latency [In Reddehase et al., Murine model of cytomegalovirus latency and reactivation, Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 315-331, 2008]. A hallmark of the CD8 T cell response to CMV is the observation that with increasing time during latency, CD8 T cells specific for certain viral epitopes increase in numbers, a phenomenon that has gained much attention in recent years and is known under the catchphrase 'memory inflation.' Here, we provide a unifying hypothesis linking stochastic viral gene desilencing during latency to 'memory inflation.'


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Memória Imunológica , Latência Viral/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA