Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Trace Elem Med Biol ; 74: 127085, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179462

RESUMO

BACKGROUND: Chronic iron overload could induce nephropathy via oxidative stress and inflammation, and chelating therapy has limited efficacy in removing excess intracellular iron. Although vitamin D (VD) has shown potent antioxidant and anti-inflammatory effects, as well contribute to iron homeostasis, none of the previous studies measured its potential remedial effects against chronic iron toxicity. AIMS: To measure the alleviating effects of deferasirox (DFX) and/or vitamin D (VD) single and combined therapies against nephrotoxicity induced by chronic iron overload. METHODS: Forty male rats were divided into negative (NC) and positive (PC) controls, DFX, VD, and DFX/VD groups. The designated groups received iron for six weeks followed by DFX and/or VD for another six weeks. Then, the expression pattern of renal genes and proteins including hepcidin, ferroportin (FPN), megalin, transferrin receptor 1 (TfR1), ferritin heavy and light chains, VD receptor (VDR), VD synthesizing (Cyp27b1) and catabolizing (Cyp24a1) enzymes were measured alongside serum markers of renal function and iron biochemical parameters. Additionally, several markers of oxidative stress (MDA/H2O2/GSH/SOD1/CAT/GPx4) and inflammation (IL-1ß/IL-6/TNF-α/IL-10) together with renal cell apoptosis and expression of caspase-3 (Casp-3) were measured. RESULTS: The PC rats showed pathological iron and renal biochemical markers, hypovitaminosis D, increased renal tissue iron contents with increased Cyp24a1/Megalin/ferritin-chains/hepcidin, and decreased Cyp27b1/VDR/TfR1/FPN expression than the NC group. The PC renal tissues also showed abnormal histology, increased inflammatory (IL-1ß/IL-6/TNF-α), oxidative stress (MDA/H2O2), and apoptosis markers with decreased IL-10/GSH/SOD1/CAT/GPx4. Although DFX monotherapy reduced serum iron levels, it was comparable to the PC group in renal iron concentrations, VD and iron-homeostatic molecules, alongside markers of oxidative stress, inflammation, and apoptosis. On the other hand, VD monotherapy markedly modulated renal iron and VD-related molecules, reduced renal tissue iron concentrations, and preserved renal tissue relative to the PC and DFX groups. However, serum iron levels were equal in the VD and PC groups. In contrast, the best significant improvements in serum and renal iron levels, expression of renal iron-homeostatic molecules, oxidative stress, inflammation, and apoptosis were seen in the co-therapy group. CONCLUSIONS: iron-induced nephrotoxicity was associated with dysregulations in renal VD-system together with renal oxidative stress, inflammation, and apoptosis. While DFX reduced systemic iron, VD monotherapy showed better attenuation of renal iron concentrations and tissue damage. Nonetheless, the co-therapy approach exhibited the maximal remedial effects, possibly by enhanced modulation of renal iron-homeostatic molecules alongside reducing systemic iron levels. AVAILABILITY OF DATA AND MATERIALS: All data generated or analysed during this study are included in this published article [and its Supplementary information files].


Assuntos
Colecalciferol , Sobrecarga de Ferro , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Caspase 3/metabolismo , Deferasirox/farmacologia , Ferritinas/metabolismo , Hepcidinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Rim , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Estresse Oxidativo , Ratos , Receptores da Transferrina/metabolismo , Superóxido Dismutase-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitamina D3 24-Hidroxilase/metabolismo
2.
J Biochem Mol Toxicol ; 34(3): e22440, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31926057

RESUMO

Although vitamin D (VD) and calcium (Ca) attenuate cadmium (Cd) metabolism, their combined antioxidant and anti-inflammatory actions against Cd toxicity have not been previously explored. Hence, this study measured the protective effects of VD ± Ca supplements against Cd hepatotoxicity. Forty adult male rats were distributed to: negative controls (NCs), positive controls (PCs), VD, Ca, and VD3 and Ca (VDC) groups. All groups, except NC, received CdCl2 in drinking water (44 mg/L) for 4 weeks individually or concurrently with intramuscular VD3 (600 IU/kg; three times per week) and/or oral Ca (100 mg/kg; five times per week). The PC group showed abnormal hepatic biochemical parameters and increase in cellular cytochrome C, caspase-9, and caspase-3 alongside the apoptotic/necrotic cell numbers by terminal deoxynucleotidyl transferase dUTP nick end labeling technique. The PC hepatic tissue also had substantially elevated pro-oxidants (malondialdehyde [MDA]/H2 O2 /protein carbonyls) and inflammatory cytokines (interleukin 1ß [IL-1ß]/IL-6/IL17A/tumor necrosis factor-α), whereas the anti-inflammatory (IL-10/IL-22) and antioxidants (glutathione [GSH]/GPx/catalase enzyme [CAT]) markers declined. Hypovitaminosis D, low hepatic tissue Ca, aberrant hepatic expression of VD-metabolizing enzymes (Cyp2R1/Cyp27a1/cyp24a1), receptor and binding protein alongside Ca-membrane (CaV 1.1/CaV 3.1), and store-operated (RyR1/ITPR1) channels, and Ca-binding proteins (CAM/CAMKIIA/S100A1/S100B) were observed in the PC group. Both monotherapies decreased serum, but not tissue Cd levels, restored the targeted hepatic VD/Ca molecules' expression. However, these effects were more prominent in the VD group than the Ca group. The VDC group, contrariwise, disclosed the greatest alleviations on serum and tissue Cd, inflammatory and oxidative markers, the VD/Ca molecules and tissue integrity. In conclusion, this report is the first to reveal boosted protection for cosupplementing VD and Ca against Cd hepatotoxicity that could be due to enhanced antioxidative, anti-inflammatory, and modulation of the Ca pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cálcio/farmacologia , Doença Hepática Induzida por Substâncias e Drogas , Colecalciferol/farmacologia , Fígado , Animais , Cádmio/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos , Ratos Wistar
3.
J Histochem Cytochem ; 66(11): 825-839, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29873589

RESUMO

Little is known about the renal responses to acute iron overloading. This study measured the renal tubular expression of transferrin receptor-1 (TfR1), cubilin/megalin receptors, hepcidin, ferroportin, and ferritin chains following subacute intoxication of 40 male Wistar rats with a single oral dose of ferrous iron (300 mg/kg). The animals were randomly subdivided into 4 equal subgroups at the time of necropsy (1, 2, 4, and 8 hr). The results were compared with the controls ( n=15) and with the chronic group ( n=15), which received iron for 4 weeks (75 mg/kg/day; 5 days/week). Although both toxicity models inhibited TfR1, they upregulated the cubilin/megalin receptors and hepcidin, and triggered iron deposition in tubular cells. The ferritin heavy-chain and ferroportin were downregulated in the 2-hr and 4-hr acute subgroups, whereas chronic toxicity promoted their expression, compared with controls. Moreover, the 4-hr and 8-hr subgroups had higher intracellular Fe+2 and marked cell apoptosis compared with the chronic group. In conclusion, the kidney appears to sustain iron reabsorption in both intoxication models. However, the cellular iron storage and exporter proteins were differentially expressed in both models, and their inhibition post-acute toxicity might contribute toward the intracellular accumulation of Fe+2, oxidative stress, and ferroptosis.


Assuntos
Sobrecarga de Ferro/patologia , Ferro/análise , Rim/patologia , Doença Aguda , Animais , Apoptose , Caspases/análise , Doença Crônica , Ensaio de Imunoadsorção Enzimática/métodos , Ferritinas/análise , Ferritinas/sangue , Imunofluorescência/métodos , Hepcidinas/análise , Hepcidinas/sangue , Ferro/sangue , Sobrecarga de Ferro/sangue , Rim/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/análise , Masculino , Estresse Oxidativo , Ratos Wistar , Receptores de Superfície Celular/análise , Receptores da Transferrina/análise
4.
Sci Rep ; 8(1): 4853, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556070

RESUMO

This study measured the effects of vitamin D (VD) supplementation on the underlying molecular pathways involved in renal and testicular damage induced by lead (Pb) toxicity. Thirty two adult male Wistar rats were divided equally into four groups that were treated individually or simultaneously, except the negative control, for four weeks with lead acetate in drinking water (1,000 mg/L) and/or intramuscular VD (1,000 IU/kg; 3 days/week). Pb toxicity markedly reduced serum VD and Ca2+, induced substantial renal and testicular injuries with concomitant significant alterations in the expression of VD metabolising enzymes, its receptor and binding protein, and the calcium sensing receptor. Pb also significantly promoted lipid peroxidation and pro-inflammatory cytokines (IL-4 and TNF-α) in the organs of interest concomitantly with declines in several anti-oxidative markers (glutathione, glutathione peroxidase and catalase) and the anti-inflammatory cytokine, IL-10. The co-administration of VD with Pb markedly mitigated renal and testicular injuries compared with positive controls. This was associated with restoration of the expression of VD related molecules, promotion of anti-oxidative and anti-inflammatory markers, but tissue Pb concentrations were unaffected. In conclusion, this report is the first to reveal potential protective effects for VD against Pb-induced renal and testicular injuries via anti-inflammatory and anti-oxidative mechanisms.


Assuntos
Antioxidantes/metabolismo , Imunomodulação/efeitos dos fármacos , Rim/efeitos dos fármacos , Chumbo/toxicidade , Testículo/efeitos dos fármacos , Vitamina D/farmacologia , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Citocinas/sangue , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Rim/citologia , Rim/imunologia , Rim/metabolismo , Chumbo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Testículo/citologia , Testículo/imunologia , Testículo/metabolismo
5.
Int Rev Cytol ; 236: 101-22, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15261737

RESUMO

Testican-1 is a highly conserved, multidomain proteoglycan that is most prominently expressed in the thalamus of the brain, and is upregulated in activated astroglial cells of the cerebrum. Several functions of this gene product have now been demonstrated in vitro including membrane-type matrix metalloproteinase inhibition, cathepsin L inhibition, and low-affinity calcium binding. The purified gene product has been shown to inhibit cell attachment and neurite extensions in culture. Functions of testican in vivo have yet to be demonstrated in knockout mice or other models. Testican has been shown to carry substantial amounts of chondroitin sulfate as well as other oligosaccharides, but the biological significance of these embellishments is not yet known.


Assuntos
Inibidores de Proteases/metabolismo , Proteoglicanas/metabolismo , Sequência de Aminoácidos , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Catepsina L , Catepsinas/antagonistas & inibidores , Adesão Celular , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Cisteína Endopeptidases , Glicosaminoglicanos/metabolismo , Humanos , Metaloproteinases da Matriz Associadas à Membrana , Metaloendopeptidases/antagonistas & inibidores , Oligossacarídeos/metabolismo , Estrutura Terciária de Proteína , Proteoglicanas/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA