Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 256: 119180, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38795948

RESUMO

The main focus of anticancer drug discovery is on developing medications that are gentle on normal cells and should have the ability to target multiple anti-cancer pathways. Liver cancer is becoming a worldwide epidemic due to the highest occurring and reoccurring rate in some countries. Calotropis procera is a xerophytic herbal plant growing wildly in Saudi Arabia. Due to its anti-angiogenic and anticancer capabilities, "C. procera" is a viable option for developing innovative anticancer medicines. However, no study has been done previously, to discover angiogenic and anti-cancer targets which are regulated by C. procera in liver cancer. In this study, leaves, stems, flowers, and seeds of C. procera were used to prepare crude extracts and were fractionated into four solvents of diverse polarities. These bioactivity-guided solvent fractions helped to identify useful compounds with minimal side effects. The phytoconstituents present in the leaves and stem were identified by GC-MS. In silico studies were done to predict the anti-cancer targets by major bioactive constituents present in leaves and stem extracts. A human angiogenesis antibody array was performed to profile novel angiogenic targets. The results from this study showed that C. procera extracts are an ideal anti-cancer remedy with minimum toxicity to normal cells as revealed by zebrafish in vivo toxicity screening assays. The novel antiangiogenic and anticancer targets identified in this study could be explored to design medication against liver cancer.


Assuntos
Calotropis , Neoplasias Hepáticas , Extratos Vegetais , Peixe-Zebra , Calotropis/química , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Neoplasias Hepáticas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Folhas de Planta/química , Feminino , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Simulação por Computador , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/análise , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/análise
2.
Heliyon ; 10(2): e24406, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304784

RESUMO

Despite substantial investments in anti-glioblastoma (GBM) drug discovery over the last decade, progress is limited to preclinical stages, with clinical studies frequently encountering obstacles. Angiogenic and histone deacetylase inhibitors (HDACi) have shown profound results in pre-clinical studies. Investigating a multicomponent anti-cancer remedy that disrupts the tumor angiogenic blood vessels and simultaneously disrupts HDACs, while inducing minimal side effects, is critically needed. The crude extracts derived from medicinal plants serve as a renewable reservoir of anti-tumor drugs, exhibiting reduced toxicity compared to chemically synthesized formulations. Calotropis procera is a traditional medicinal plant, and its anticancer potential against many cancer cell lines has been reported, however its antiangiogenic and HDAC inhibitory action is largely unknown. The anticancer activity of methanol leaf extract of C. procera was tested in three types of human glioblastoma cell lines. Wild-type and transgenic zebrafish embryos were used to evaluate developmental toxicity and angiogenic activity. A human angiogenic antibody array was used to profile angiogenic proteins in the U251 GM cell line. A real-time reverse transcriptase polymerase chain reaction (RT PCR) assay was used to detect the differential expression of eleven HDAC genes in U251 cells treated with C. procera extract. The extract significantly reduced the proliferation of all three types of GBM cell lines and the cytotoxicity was found to be more pronounced in U251 GM cells, with an IC50 value of 2.63 ± 0.23 µg/ml, possibly by arresting the cell cycle at the G2/M transition. The extract did not exhibit toxic effects in zebrafish embryos, even at concentrations as high as 1000 µg/ml. The extract also inhibited angiogenic blood vessel formation in the transgenic zebrafish model in a dose-dependent manner. The results from the angiogenic antibody array have suggested novel angiogenesis targets that can be utilized to treat GBM. Real-time RT PCR analysis has shown that C. procrea extract caused an upregulation of HDAC5, 7, and 10, while the mRNA of HDAC1, 2, 3 and 8 (Class I HDACs), and HDAC4, 6, and 9 (Class II) were downregulated in U251 GM cells. The cytotoxicity of the C. procera extract on GBM cell lines could be due to its dual action by regulation of both tumor angiogenesis and histone deacetylases enzymes. Through this study, the C. procera leaf extract has been suggested as an effective remedy to treat GBM with minimal toxicity. In addition, various novel angiogenic and HDAC targets has been identified which could be helpful in designing better therapeutic strategies to manage glioblastoma multiforme in human patients.

3.
Environ Res ; 242: 117764, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029820

RESUMO

An in-vitro investigation was performed to evaluate and compare the phytochemical, antioxidant, antidiabetic, anti-inflammatory, and anti-lung cancer activities of methanol extracts of aerial parts of Andrographis paniculata and Trianthema portulacastrum. Furthermore studied major functional groups of phytochemicals present in the methanol extracts of these plants through Fourier transform infrared (FTIR) analysis. The results showed that the methanol extract of A. paniculata contain more number of pharmaceutically valuable phytochemicals such as alkaloids, flavonoids, terpenoids, saponin, glycoside, phytosterol, and tannin than T. portulacastrum. Similar way the methanol extract of A. paniculata showed considerable dose dependent antioxidant (DPPH: 63%), antidiabetic (α-amylase: 82.31% and α-glucosidase inhibitions: 72.34%), and anti-inflammatory (albumin-denaturation inhibition: 76.3% and anti-lipoxygenase: 61.2%) activities (at 900 µg mL-1 concentration) than T. portulacastrum. However, the anti-lung cancer activities of these test plants against A549 cells were not considerable. According to FTIR analysis, the A. paniculata methanol extract has a larger number of characteristic peaks attributed to the active functional groups of pharmaceutically valuable bioactive components that belong to different types of phytochemicals. These findings imply that A. paniculata methanol extracts can be used for additional research, such as bioactive compound screening and purification, as well as assessing their potential biomedical uses in various in-vitro and in-research settings.


Assuntos
Andrographis , Neoplasias , Humanos , Hipoglicemiantes/farmacologia , Andrographis paniculata , Metanol/química , Antioxidantes/farmacologia , Andrographis/química , Anti-Inflamatórios/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
4.
Chemosphere ; 343: 140076, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678600

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are omnipresent, persistent, and carcinogenic pollutants continuously released in the atmosphere due to the rapid increase in population and industrialization worldwide. Hence, there is an ultimate rise in concern about eliminating the toxic PAHs and their related aromatic hydrocarbons from the air, water, and soil environment by employing efficient removal technologies using nanoparticles as a catalyst. Here, the degradation of selective PAHs viz., anthracene and benzene using laboratory synthesized rGO-Ag-Cu-Ni nanocomposite (catalyst) was studied. Characterization studies revealed the nanocomposites exhibited surface plasma resonance at 350 - 450 nm, confirming the presence of Ag, Cu, and Ni metal ions embedded on the reduced graphene substrate. It was found that the nanocomposites synthesized were spherical, amorphous in nature, and aggregated together with measurements ranging from 423 to 477 nm. An SEM-EDX analysis of the nanocomposite demonstrated that it contained 25.13% O, 14.24% Ni, 27.79% Cu, and 32.84% Ag, which confirms the synthesis of the nanocomposite. Crystalline, sharp nanocomposites of average size 17-41 nm with an average diameter of 118.5 nm (X-ray diffraction and DLS) were observed. FTIR spectra showed that the nanocomposites had the functional groups alkanes, alkenes, alkynes, carboxylic acids, and halogen derivatives. Batch adsorption studies revealed that the maximum degradation achieved at optimum nano-composite concentration of 10 µg/mL, pH value of 5, PAHs concentration of 2 µg/mL and effective irradiation source being UV radiations in the case of both benzene and anthracene pollutants. The degradation of benzene and anthracene followed Freundlich & Langmuir isotherm with the highest R2 value of 0.9894 & 0.9885, respectively. Adsorption kinetic studies under optimum conditions revealed that the adsorption of both benzene and anthracene followed Pseudo-second order kinetics. Antimicrobial studies revealed that the synthesized nano-composite exhibited potential antimicrobial activity against Gram positive bacterium (Bacillus subtilis, Staphylococcus aureus), Gram negative bacterium (Klebsiella pneumonia, Escherichia coli) and fungal strain (Aspergillus niger) respectively. Thus, the synthesized rGO-Ag-Cu-Ni nano-composite acts as an effective antimicrobial agent as well as a PAHs degrading agent, helping to overcome antibiotics resistance and to mitigate the overgrowing PAHs pollution in the environment.


Assuntos
Anti-Infecciosos , Poluentes Ambientais , Nanocompostos , Hidrocarbonetos Policíclicos Aromáticos , Benzeno , Cinética , Antracenos , Nanocompostos/química , Adsorção
5.
Biomedicines ; 11(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37189672

RESUMO

A safe and effective treatment for liver cancer is still elusive despite all attempts. Biomolecules produced from natural products and their derivatives are potential sources of new anticancer medications. This study aimed to investigate the anticancer potential of a Streptomyces sp. bacterial extract against diethylnitrosamine (DEN)-induced liver cancer in Swiss albino mice and explore the underlying cellular and molecular mechanisms. The ethyl acetate extract of a Streptomyces sp. was screened for its potential anticancer activities against HepG-2 using the MTT assay, and the IC50 was also determined. Gas chromatography-mass spectrometric analysis was used to identify the chemical constituents of the Streptomyces extract. Mice were administered DEN at the age of 2 weeks, and from week 32 until week 36 (4 weeks), they received two doses of Streptomyces extract (25 and 50 mg/kg body weight) orally daily. The Streptomyces extract contains 29 different compounds, according to the GC-MS analysis. The rate of HepG-2 growth was dramatically reduced by the Streptomyces extract. In the mice model. Streptomyces extract considerably lessened the negative effects of DEN on liver functions at both doses. Alpha-fetoprotein (AFP) levels were significantly (p < 0.001) decreased, and P53 mRNA expression was increased, both of which were signs that Streptomyces extract was suppressing carcinogenesis. This anticancer effect was also supported by histological analysis. Streptomyces extract therapy additionally stopped DEN-induced alterations in hepatic oxidative stress and enhanced antioxidant activity. Additionally, Streptomyces extract reduced DEN-induced inflammation, as shown by the decline in interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) levels. Additionally, the Streptomyces extract administration dramatically boosted Bax and caspase-3 levels while decreasing Bcl-2 expressions in the liver according to the Immunohistochemistry examination. In summary, Streptomyces extract is reported here as a potent chemopreventive agent against hepatocellular carcinoma through multiple mechanisms, including inhibiting oxidative stress, cell apoptosis, and inflammation.

6.
Saudi J Biol Sci ; 27(2): 611-622, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32210679

RESUMO

Recent trends in anticancer therapy is to use therapeutic agents which not only kill the cancer cell, but are less toxic to surrounding normal cells/tissue. One approach is to cut the nutrient supply to growing tumor cells, by blocking the formation of new blood vessels around the tumor. As the phytochemicals and botanical crude extracts have proven their efficacy as natural antiangiogenic agents with minimum toxicities, there is need to explore varieties of medicinal plants for novel antiangiogenic compounds. Rumex vesicarius L. (Humeidh), is an annual herbal plant with proven medicinal values. The antiangiogenic potential, and developmental toxicity of humeidh in experimental animal models has never been studied before. The crude extracts were prepared from the roots, stems, leaves and flowers of Rumex vesicarius L. in methanol, chloroform, ethyl acetate and n-hexane. The developmental toxicity screening in zebrafish embryos, has revealed that Rumex vesicarius was not toxic to zebrafish embryos. The chloroform stem extract showed significant level of antiangiogenic activity in zebrafish angiogenic assay on a dose dependent manner. Thirty five (35) bioactive compounds were identified by gas chromatography mass spectrophotometry (GC-MS) analysis in the stem extract of Rumex vesicarius. Propanoic acid, 2-[(trimethylsilyl)oxy]-, trimethylsilyl ester, Butane, 1,2,3-tris(trimethylsiloxy), and Butanedioic acid, bis(trimethylsilyl) ester were identified as major compound present in the stem of R. vasicarius. The anticancer activity of roots, stem, leaves and flowers crude extract was evaluated in human breast cancer (MCF7), human colon carcinoma (Lovo, and Caco-2), human hepatocellular carcinoma (HepG2) cell lines. Most of the crude extracts did not show significant level of cytotoxicity in tested cancer cells line, except, chloroform extract of stem which exhibited strong anticancer activity in all tested cancer cells with IC50 values in micro molar range. Based on these results, it is recommended that formulation prepared from R. vesicarius can further be tested in clinical trials in order to explore its therapeutic potential as an effective and safe natural anticancer product.

7.
Pak J Pharm Sci ; 31(2): 421-427, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29618430

RESUMO

Natural sources have been and will remain an inspiration source for modern chemistry. The current study investigates the antiproliferative and anti-inflammatory action of the ethyl acetate fraction of Penicillium crustosum from Phoenix dactylifera. This paper reports the isolation of P. crustosum from leaves of P. dactylifera and the antiproliferative activities of ethyl acetate fraction on cancer cells. To reach this goal, the anti-proliferation and cytotoxicity effects were evaluated by MTT and LDH assay respectively. The quantitative real time PCR technique was used to investigate IL-6 and IL-8 gene expression. Our results revealed higher anti-proliferative activity against HepG2 (82µg/ml) than MCF7 (126µg/ml) and inhibited the migration of the cell lines. The ethyl acetate fraction significantly altered LDH levels and reduced IL-6 transcript expression on MCF7 cell line but not in HepG2 cell line which could be specific anti-inflammatory drug in breast cancer cell line. These results suggest that Phoenix dactylifera extract has a potent anti-proliferative and anti-inflammatory action. Further investigation to isolate the active compounds and mode of action is required.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Penicillium/química , Phoeniceae/microbiologia , Acetatos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Endófitos/química , Células Hep G2 , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , L-Lactato Desidrogenase/metabolismo , Células MCF-7 , Penicillium/isolamento & purificação
8.
Biol Pharm Bull ; 41(3): 350-359, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29249771

RESUMO

Isatin (1H-indole-2,3-dione) and many of its derivatives are reported to have pharmacological properties. In this study, we report the synthesis and biological activity of a new class of N-alkyl-isatin-3-iminobenzoic acid derivatives prepared via the condensation of N-alkyl isatin with 4-aminobenzoic acid by conventional, microwave, and ultrasonic methods. Microwave irradiation yielded the products in a shorter reaction time with higher yields and purities. The compounds were screened in zebrafish embryos, and also in three human cancer cell lines (MCF7, HepG2, and Jurkat) and one normal human cell line i.e., human foreskin cell line (HFF-1). Two compounds (3c, 3f) were found to be highly effective against hematopoiesis in live zebrafish embryo at 10 µM concentration. The developmental stage-dependent treatment indicated that these compounds interfered with the differentiation of hemangioblasts to hematopoietic cells in zebrafish embryos. The comparative screening of semaxanib (SU5416) (a known isatin derivatives), to compounds synthesized in this study, revealed the contrasting effects of these two classes of isatin derivatives on zebrafish hematopoiesis. Most of the N-alkyl-isatin-3-iminobenzoic acid derivatives were toxic on cancer and non-cancer tested human cells lines, however, the compounds 3c and 3f specifically affected the cell viability of Jurkat cells (human hematological cell line) with least IC50 values of 16.5 and 7.8 µM. The structure-activity relationship (SAR) analysis indicated that the substitution pattern of the isatin at the 5-position was vital for activity. The in vivo and in vitro biological activities of these compounds suggested their potential use as pharmaceutical compounds for human leukemia treatment.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Benzoatos/síntese química , Benzoatos/farmacologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Hematopoese/efeitos dos fármacos , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Proteína Proto-Oncogênica c-fli-1/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética
9.
Asian Pac J Cancer Prev ; 15(18): 7785-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25292064

RESUMO

BACKGROUND: Valproic acid (VPA) is a potent anticancer and antiangiogenic agent. However, design and synthesis of chemical derivatives with improved antiangiogenic and anticancer activities are still necessary. In this study a library of novel derivatives of VPA was synthesized and tested. METHODS: A human liver cancer cell line (HepG2) and a human normal embryonic kidney cell line (HEK 293) were exposed to various concentrations of VPA derivatives for 24 hours and cell viability was checked by MTT colorimetric assay. Anti-angiogenic properties were evaluated in transgenic zebrafish embryos. RESULTS: N-valproylglycine derivatives suppressed survival almost 70% (p value 0.001) in HepG2 cells but only 10-12% in HEK 293 cells (p value 0.133). They also suppressed angiogenic blood vessel formation by 80% when used between 2-20 µM in zebrafish embryos. Valproic acid hydrazides showed moderate level of anticancer activity by affecting 30-50% (p value 0.001) of cell viability in HepG2 cells and 8-10% in HEK293 cells (p value 0.034). CONCLUSION: The majority of compounds in this study showed potent and stronger antiangiogenic and anticancer activity than VPA. They proved selectively toxic to cancer cells and safer for normal cells. Moreover, these compounds inhibited developmental angiogenesis in zebrafish embryos. Based on the fact that liver is a highly vascularized organ, in case of liver carcinoma these compounds have the potential to target the pathological angiogenesis and could be an effective strategy to treat hepatocellular carcinoma.


Assuntos
Inibidores da Angiogênese/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Ácido Valproico/farmacologia , Inibidores da Angiogênese/química , Animais , Animais Geneticamente Modificados , Anticonvulsivantes/farmacologia , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/patologia , Células Cultivadas , Embrião não Mamífero/citologia , Células HEK293 , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/patologia , Estrutura Molecular , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA