Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Biol Rep ; 51(1): 807, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002036

RESUMO

BACKGROUND: Acute Myeloid Leukemia (AML) is a fast-developing invading cancer that impacts the blood and bone marrow, marked by the rapid proliferation of abnormal white blood cells. Chemotherapeutic agents, a primary treatment for AML, encounter clinical limitations such as poor solubility and low bioavailability. Previous studies have highlighted antibiotics as effective in inducing cancer cell death and potentially preventing metastasis. Besides, insulin is known to activate the PI3K/Akt pathway, often disrupted in cancers, leading to enhanced cell survival and resistance to apoptosis. In light of the above-mentioned points, we examined the anti-cancer impact of antibiotics Ciprofloxacin (CP) and Salinomycin (SAL) and their combination on KG1-a cells in the presence and absence of insulin. METHODS: This was accomplished by exposing KG1-a cells to different doses of CP and SAL alone, in combination, and with or without insulin for 24-72 h. Cell viability was evaluated using the MTT assay. Besides, apoptotic effects were examined using Hoechst staining and Annexin-V/PI flow cytometry. The expression levels of Bax, p53, BIRC5, Akt, PTEN, and FOXO1 were analyzed through Real-Time PCR. RESULTS: CP and SAL demonstrated cytotoxic and notable pro-apoptotic impact on KG1-a cells by upregulating Bax and p53 and downregulating BIRC5, leading to G0/G1 cell cycle arrest and prevention of the PI3K-Akt signaling pathway. Our findings demonstrated that combination of CP and SAL promote apoptosis in the KG1-a cell line by down-regulating BIRC5 and Akt, as well as up-regulating Bax, p53, PTEN, and FOXO1. Additionally, the findings strongly indicated that insulin effectively mitigates apoptosis by enhancing Akt expression and reducing FOXO1 and PTEN gene expression in the cells treated with CP and SAL. CONCLUSION: Our findings showed that the combined treatment of CP and SAL exhibit a strong anti-cancer effect on leukemia KG1-a cells. Moreover, it was discovered that the PI3K-Akt signaling can be a promising target in leukemia treatment particularly in hyperinsulinemia condition.


Assuntos
Apoptose , Sobrevivência Celular , Ciprofloxacina , Insulina , Piranos , Humanos , Ciprofloxacina/farmacologia , Apoptose/efeitos dos fármacos , Piranos/farmacologia , Linhagem Celular Tumoral , Insulina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Policetídeos de Poliéter
2.
J Adv Pharm Technol Res ; 15(1): 43-48, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389973

RESUMO

The major mortality factor for women globally is breast cancer, and current treatments have several adverse effects. Hesperetin (HSP) is a flavone that occurs naturally with anti-tumor capabilities and has been investigated as a potential treatment for cancer. This study aimed to investigate the cytotoxic and anti-malignant potential of HSP on breast cancer cells (BT-474) and normal cells (MCF-10a). The results indicated that HSP has dose-dependent cytotoxicity in BT-474 and MCF-10a cells. The elevated concentration of HSP lowered cell viability and proliferation. The half-maximal inhibitory concentration (IC50) of HSP in BT-474 cancer cells after a 48-h exposure was 279.2 µM/ml, while the IC50 in normal cells was 855.4 µM/ml. The cytotoxicity of HSP was more significant in cancer cell lines than in normal cell lines and this aspect presents a favorable factor in utilizing the drug for the treatment of breast cancer. The apoptotic effect of HSP in BT-474 cells was investigated, and it was found that the higher the concentration of HSP more the cells underwent apoptosis. Furthermore, the highest concentration of HSP led to overexpression of the MLH1 and MSH2 genes in both breast cancer and normal cell lines. Overall, our study suggests that HSP has an anticancer effect on breast cancer cell lines, and the effect is concentration dependent.

3.
Anticancer Agents Med Chem ; 24(3): 203-212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38038011

RESUMO

BACKGROUND: It has been established that pyrazine derivatives, which have widespread bioactivities, can effectively treat cancer. OBJECTIVES: In this study, we investigated the effects of 2-methoxy-5-(oxiran-2-ylmethyl) phenyl pyrazine-2- carboxylate (2-mOPP), a new pyrazine derivative, on proliferation, viability, and apoptosis induction in human leukemia K562 cells. METHODS: For this purpose, the K562 cells were treated with various concentrations (20-120 µM) of the 2-mOPP for 24-72 hours. Cell viability was determined by MTT growth inhibition assay. Apoptotic activity of 2-mOPP was investigated morphologically by Hoechst staining, cell surface expression assay of phosphatidylserine by Annexin-V/PI technique, as well as DNA fragmentation assay. The effect of 2-mOPP on the K562 cell cycle was studied by flow cytometry. To determine the impact of 2-mOPP on the expression of intrinsic apoptosis-related genes, Bcl2 (anti-apoptotic), Bax (pro-apoptotic), and Survivin genes expression levels were evaluated before and after treatment with 2-mOPP through Real-Time PCR analysis. RESULTS: The results revealed that 2-mOPP inhibited viability with IC50 of 25µM in 72 h. Morphological changes assessment by fluorescence microscopy, Annexin V/PI double staining by flow cytometry, and DNA ladders formation upon cell treatment with the 2-mOPP showed that this compound induces apoptosis at IC50 value. Cell cycle arrest was observed in the G0/G1 phase, and the sub-G1 cell population (the sign of apoptosis) increased in a time-dependent manner. Low expression levels of Bcl2 and Survivin in K562 cells were observed 24-72 h after treatment. Along with the down-regulation of Survivin and Bcl2, the expression of Bax was increased after treatment with 2-mOPP. CONCLUSION: These findings demonstrate that the new pyrazine derivative plays a crucial role in blocking the proliferation of the leukemic cells by inducing cell cycle arrest and apoptosis.


Assuntos
Apoptose , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Survivina , Células K562 , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Proliferação de Células
4.
Curr Pharm Des ; 29(42): 3385-3399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099527

RESUMO

Cervical cancer is one of the most prevalent malignancies among females and is correlated with a significant fatality rate. Chemotherapy is the most common treatment for cervical cancer; however, it has a low success rate due to significant side effects and the incidence of chemo-resistance. Curcumin, a polyphenolic natural compound derived from turmeric, acts as an antioxidant by diffusing across cell membranes into the endoplasmic reticulum, mitochondria, and nucleus, where it performs its effects. As a result, it's been promoted as a chemo-preventive, anti-metastatic, and anti-angiogenic agent. As a consequence, the main goal of the present review was to gather research information that looked at the link between curcumin and its derivatives against cervical cancer.


Assuntos
Curcumina , Neoplasias do Colo do Útero , Feminino , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Extratos Vegetais/farmacologia , Antioxidantes , Curcuma
5.
J Adv Pharm Technol Res ; 14(4): 338-344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107455

RESUMO

Hesperetin (HSP), a flavonoid, has been validated to modify gene expression and function as an epigenetic agent to stop the development of breast carcinoma cells. HSP was investigated in this research to evaluate the expression of the MLH1 and MSH2 genes in cancerous breast cell lines (SKBR3) and healthy cell lines (MCF-11A) after exposure to different dosages (200, 400, and 600 µM/mL) of HSP. After 48 h of exposure, SKBR3's half-maximal inhibitory concentration was 289.6 µM/mL and MCF-10A's was 855.4 µM/mL. The research found that increasing HSP concentrations were closely correlated with an increase in MLH1 gene levels in the SKBR3 cell line, as shown by median and percentile values. HSP therapy caused the MLH1 gene expression to substantially vary in different groups, and in the SKBR3 cell line, MSH2 gene expressions were elevated in a dose-escalating manner. Moreover, HSP also raised the number of apoptotic cells, with the fraction of apoptotic cells escalating substantially at doses of 400 and 600 µM/mL. The outcomes suggested that HSP has the potential to be utilized as a therapeutic intervention for breast cancer, as it can induce apoptosis and reduce cell viability.

6.
J Adv Pharm Technol Res ; 14(3): 241-247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692022

RESUMO

Due to its genetic and phenotypic heterogeneity, breast cancer is very difficult to eliminate. The harmful consequences of conventional therapies like radiation and chemotherapy have prompted the search for organic-based alternatives. Hesperetin (HSP), a flavonoid, has been discovered to possess the ability to hinder the proliferation of cell associated with breast cancer by acting as an epigenetic agent and modifying gene expression. In this investigation, breast cancer cells (BT-549) and normal cells (MCF-10a) were subjected to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test and three different doses (200, 400, and 600 µM/mL) of HSP for real-time polymerase chain reaction and flow cytometry to examine its cytotoxic and anti-malignant potential. HSP was shown to be cytotoxic to both normal and breast cancer cells, but had a more pronounced effect on the cancer cell lines. After 48 h of treatment, the half-maximal inhibitory concentration (IC50) for BT-549 was 279.2 µM/mL, whereas the IC50 for MCF-10a was 855.4 µM/mL. At high HSP concentrations, upregulation of the MLH1 and MSH2 genes was observed in both cell lines. The influence of HSP on MLH1 gene expression was concentration dependent. Moreover, HSP had a concentration-dependent effect on MSH2 gene expression in the BT-549 cell line but not in the MCF-10a cell line. Cell death and early apoptosis were shown to be concentration dependent upon the application of HSP, as determined by flow cytometric analysis. HSP's capacity to cause apoptosis and its stronger impact on the malignant cell line when analyzed with the normal cell line imply that it might be useful as an effective therapeutic approach for combating breast cancer.

7.
Front Digit Health ; 5: 1187578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621964

RESUMO

Introduction: In gynecologic oncology, ovarian cancer is a great clinical challenge. Because of the lack of typical symptoms and effective biomarkers for noninvasive screening, most patients develop advanced-stage ovarian cancer by the time of diagnosis. MicroRNAs (miRNAs) are a type of non-coding RNA molecule that has been linked to human cancers. Specifying diagnostic biomarkers to determine non-cancer and cancer samples is difficult. Methods: By using Boruta, a novel random forest-based feature selection in the machine-learning techniques, we aimed to identify biomarkers associated with ovarian cancer using cancerous and non-cancer samples from the Gene Expression Omnibus (GEO) database: GSE106817. In this study, we used two independent GEO data sets as external validation, including GSE113486 and GSE113740. We utilized five state-of-the-art machine-learning algorithms for classification: logistic regression, random forest, decision trees, artificial neural networks, and XGBoost. Results: Four models discovered in GSE113486 had an AUC of 100%, three in GSE113740 with AUC of over 94%, and four in GSE113486 with AUC of over 94%. We identified 10 miRNAs to distinguish ovarian cancer cases from normal controls: hsa-miR-1290, hsa-miR-1233-5p, hsa-miR-1914-5p, hsa-miR-1469, hsa-miR-4675, hsa-miR-1228-5p, hsa-miR-3184-5p, hsa-miR-6784-5p, hsa-miR-6800-5p, and hsa-miR-5100. Our findings suggest that miRNAs could be used as possible biomarkers for ovarian cancer screening, for possible intervention.

8.
J Fluoresc ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535231

RESUMO

The fluoroquinolone class of antibiotics includes derivatives of the drug ciprofloxacin. These substances have recently been advocated for the treatment of cancer. In the current study, we examined the cytotoxicity and apoptosis-inducing potential of a novel synthetic ciprofloxacin derivative in the human myeloid leukemia KG1-a cell line. With an IC50 of 25µM, this ciprofloxacin derivative, 7-(4-(2-(benzhydryloxy)-2-oxoethyl) piperazin-1-yl)-1-cyclopropyl-6-fluoro-4-oxo-1,4 dihydroquinoline-3- carboxylic acid (4-BHPCP), was an active drug. Through Hoechst 33,258 staining and Annexin V/PI double staining experiments, the apoptotic activity of the 4-BHPCP was assessed morphologically. Real-time quantitative PCR was used to assess changes in the expression level of certain apoptosis-related genes, including Bcl-2, Bax, and Survivin (qRT PCR). The results of the qRT PCR analysis demonstrated that 4-BHPCP promotes apoptosis in the KG1-a cell line by down-regulating Survivin and Bcl2, up-regulating Bax, and increasing the Bax/Bcl2 transcripts in a time-dependent manner. These results imply that this novel chemical may be a promising therapy option for acute myeloid leukemia.

9.
Front Immunol ; 14: 1145840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283736

RESUMO

Objective: The hyperinflammatory response, caused by severe acute respiratory syndrome-2 (SARS-CoV-2), is the most common cause of death in patients with coronavirus disease 2019 (COVID-19). The etiopathogenesis of this illness is not fully understood. Macrophages appear to play a key part in COVID-19's pathogenic effects. Therefore, this study aims to examine serum inflammatory cytokines associated with the activation state of macrophages in COVID-19 patients and attempt to find accurate predictive markers for disease severity and mortality risk in hospital. Methods: 180 patients with COVID-19 and 90 healthy controls (HCs) participated in this study. Patients were divided into three different subgroups, mild (n=81), severe (n=60), and critical groups (n=39). Serum samples were collected and IL (Interleukin)-10, IL-23, tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), IL-17, monocyte chemoattractant protein-1 (MCP-1) and chemokine ligand 3 (CCL3) were determined by ELISA. In parallel, myeloperoxidase (MPO) and C-reactive protein (CRP) were measured using colorimetric and electrochemiluminescence methods, respectively. Data were collected, and their associations with disease progression and mortality were assessed using regression models and receiver operating characteristic (ROC) curves. Results: Compared to HCs, a significant increase in IL-23, IL-10, TNF-α, IFN-γ and MCP-1, were observed in COVID-19 patients. Serum levels of IL-23, IL-10, and TNF-α were significantly higher in COVID-19 patients with critical cases compared to mild and severe cases, and correlated positively with CRP level. However, non-significant changes were found in serum MPO and CCL3 among the studied groups. Moreover, significant positive association has been observed among increased IL-10, IL-23 and TNF-α in serum of COVID-19 patients. Furthermore, a binary logistic regression model was applied to predict death's independent factors. Results showed that IL-10 alone or in combination with IL23 and TNF-α are strongly linked with non-survivors in COVID-19 patients. Finally, ROC curve results uncovered that IL-10, IL-23 and TNF-α were excellent predictors for prognosing COVID-19. Conclusion: The elevations of IL-10, IL-23, and TNF-α levels were seen in severe and critical cases of COVID-19 patients and their elevations were linked to the in-hospital mortality of the disease. A prediction model shows that the determination of these cytokines upon admission is important and should be done on COVID-19 patients as a way of evaluating the prognosis of the disease. COVID-19 Patients with high IL-10, IL-23, and TNF-α on admission are more likely to experience a severe form of the disease; therefore, those patients should be cautionary monitored and treated.


Assuntos
COVID-19 , Humanos , Interleucina-10 , Fator de Necrose Tumoral alfa , Mortalidade Hospitalar , SARS-CoV-2 , Citocinas , Interferon gama , Interleucina-23
10.
Ann Saudi Med ; 43(3): 125-142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37270678

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a devastating pandemic that causes disease with a variability in susceptibility and mortality based on variants of various clinical and demographic factors, including particular genes among populations. OBJECTIVES: Determine associations of demographic, clinical, laboratory, and single nucleotide polymorphisms in the ACE2, TMPRSS2, TNF-α, and IFN-γ genes to the incidence of infection and mortality in COVID-19 patients. DESIGN: Prospective cohort study SETTINGS: Various cities in the Kurdistan Region of Iraq. PATIENTS AND METHODS: This prospective cohort study compared laboratory markers (D-dimer, tumor necrosis factor-alpha [TNF-α], interferon-gamma [IFN-γ], C-reactive protein [CRP], lymphocyte and neutrophil counts) between COVID-19 patients and healthy controls. DNA was extracted from blood, and genotypes were done by Sanger sequencing. MAIN OUTCOME MEASURES: Single nucleotide polymorphisms of the ACE2, TMPRSS2, TNF-α, and IFN-γ genes and demographic characteristics and laboratory markers for predicting mortality in COVID-19. SAMPLE SIZE: 203 (153 COVID-19 patients, 50 health control subjects). RESULTS: Forty-eight (31.4%) of the COVID-19 patients died. Age over 40 and comorbidities were risk factors for mortality, but the strongest associations were with serum IFN-γ, the neutrophil-to-lymphocyte ratio (NLR), and serum TNF-α. The AA genotype and A allele of TMPRSS2 rs2070788 decreased while the GA genotype and A allele of TNF-α increased susceptibility to COVID-19. Patients with the GA genotype of TNF-α rs1800629 had shorter survival times (9.9 days) than those carrying the GG genotype (18.3 days) (P<.0001 by log-rank test). The GA genotype versus the GG genotype was associated with higher levels of serum TNF-α. The GA genotype increased mortality rates by up to 3.8 fold. The survival rate for COVID-19 patients carrying the IFN-γ rs2430561 TT genotype (58.5%) was lower than in patients with the TA and AA genotypes (80.3%). The TT genotype increased the risk of death (HR=3.664, P<.0001) and was linked to high serum IFN-γ production. Olfactory dysfunction was a predictor of survival among COVID-19 patients. CONCLUSIONS: Age older than 40, comorbidities, the NLR and particular genotypes for and the IFN-γ and TNF-α genes were risk factors for death. Larger studies in different populations must be conducted to validate the possible role of particular SNPs as genetic markers for disease severity and mortality in COVID-19 disease. LIMITATIONS: Small sample size. CONFLICT OF INTEREST: None.


Assuntos
COVID-19 , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/genética , Predisposição Genética para Doença , Enzima de Conversão de Angiotensina 2/genética , Estudos Prospectivos , COVID-19/genética , Genótipo , Polimorfismo de Nucleotídeo Único , Interferon gama/genética , Marcadores Genéticos , Demografia , Estudos de Casos e Controles
11.
Mol Biol Rep ; 50(8): 6591-6599, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37341919

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers and the fourth leading cause of cancer-related deaths worldwide. We aimed to determine the role of miR-650 in CRC pathogenesis. METHODS: In this study, we examined the expression of miR-650 and KISS1 in 80 CRC patients who either received or did not receive chemo agents. For this aim, we assessed the miR-650 and KISS1 expression levels in 80 CRC tissues, 30 of which had no history of chemotherapy. The effect of miR-650 and 5-FU on KISS1 expression was measured using qPCR and Western blotting. Also, the 5- FU effect on miR-650 expression in the CRC cell lines was measured by qRT-PCR. Next, MTT assay and Flowcytometry assays were conducted to determine the role of miR-650 in cell viability and apoptosis. RESULTS: The results showed that miR-650 was down-regulated in CRC tissues. However, patients who received 5-FU before surgery showed increased expression of miR-650. The results for KISS1 were insignificant while administering 5-FU to patients preoperatively increased its expression. In-vitro studies showed that 5-FU led to the up-regulation of miR-650 in the SW480 CRC cell line. Furthermore, the administration of miR-650 and 5-FU downregulated KISS1, especially when combined. Moreover, miR-650 with 5-FU significantly reduced cell viability in CRC cell lines by inducing apoptosis. CONCLUSIONS: These results indicate that miR-650 has a tumor suppressive function, overcoming 5-FU chemoresistance in CRC, and induces apoptosis probably by alleviating KISS1. These results suggest that miR-650 is a potential contributor to CRC pathogenesis.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Regulação para Baixo/genética , MicroRNAs/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Kisspeptinas/genética , Linhagem Celular Tumoral , Apoptose/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Proliferação de Células/genética
12.
Pathol Res Pract ; 243: 154344, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738519

RESUMO

BACKGROUND: Despite the attractive anti-cancer effects, poor solubility and low bioavailability have restricted the clinical application of Curcumin. Recent findings show that Gemini nano-curcumin (Gemini-Cur) significantly improves the cellular uptake of Curcumin and its anti-cancer effect in tumor cells. Here, we aimed to assess the suppressive effect of Gemini-Cur on 4T1 breast cancer cells in vitro and, subsequently, in BALB/c mouse models. MATERIALS AND METHODS: Fluorescence microscopy was employed to visualize cellular uptake and morphological changes of 4T1 cells during treatment with Gemini-Cur and void curcumin. MTT and annexin V/FITC assays were performed to study the toxic effect of Gemini-Cur on mouse cancer cells. For in vivo studies, BALB/c tumor-bearing mice were used to evaluate the inhibitory effect of Gemini-Cur in comparison with mice receiving free Curcumin and nanoparticles. RESULTS: Our data showed that Gemini-Cur enters the cells and inhibits proliferation in a time- and dose-dependent manner. Annexin V/FITC confirmed apoptotic effect on 4T1 cells. In vivo studies also illustrated that tumor growth is suppressed in Gemini-Cur treated mice rather than controls. Expression studies demonstrated the modulation of apoptotic and metastatic genes, including Bax, Bcl-2, MMP-9, VEGF, and COX-2 in treated mice. CONCLUSION: In conclusion, these data demonstrate the promising anti-cancer properties of Gemini-Cur on mice models. However, further studies at molecular and cellular levels are required to conclude this therapeutic advantage.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Neoplasias , Camundongos , Animais , Curcumina/farmacologia , Anexina A5/farmacologia , Camundongos Endogâmicos BALB C , Fluoresceína-5-Isotiocianato/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
13.
Front Mol Biosci ; 9: 903075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225257

RESUMO

The p53 protein is a tumor suppressor encoded by the TP53 gene and consists of 393 amino acids with four main functional domains. This protein responds to various cellular stresses to regulate the expression of target genes, thereby causing DNA repair, cell cycle arrest, apoptosis, metabolic changes, and aging. Mutations in the TP53 gene and the functions of the wild-type p53 protein (wtp53) have been linked to various human cancers. Eight TP53 gene mutations are located in codons, constituting 28% of all p53 mutations. The p53 can be used as a biomarker for tumor progression and an excellent target for designing cancer treatment strategies. In wild-type p53-carrying cancers, abnormal signaling of the p53 pathway usually occurs due to other unusual settings, such as high MDM2 expression. These differences between cancer cell p53 and normal cells have made p53 one of the most important targets for cancer treatment. In this review, we have dealt with various issues, such as the relative contribution of wild-type p53 loss of function, including transactivation-dependent and transactivation-independent activities in oncogenic processes and their role in cancer development. We also discuss the role of p53 in the process of ferroptosis and its targeting in cancer treatment. Finally, we focus on p53-related drug delivery systems and investigate the challenges and solutions.

14.
Molecules ; 27(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014474

RESUMO

Throughout the United States, cancer remains the second leading cause of death. Traditional treatments induce significant medical toxic effects and unpleasant adverse reactions, making them inappropriate for long-term use. Consequently, anticancer-drug resistance and relapse are frequent in certain situations. Thus, there is an urgent necessity to find effective antitumor medications that are specific and have few adverse consequences. Curcumin is a polyphenol derivative found in the turmeric plant (Curcuma longa L.), and provides chemopreventive, antitumor, chemo-, and radio-sensitizing properties. In this paper, we summarize the new nano-based formulations of polyphenolic curcumin because of the growing interest in its application against cancers and tumors. According to recent studies, the use of nanoparticles can overcome the hydrophobic nature of curcumin, as well as improving its stability and cellular bioavailability in vitro and in vivo. Several strategies for nanocurcumin production have been developed, each with its own set of advantages and unique features. Because the majority of the curcumin-based nanoformulation evidence is still in the conceptual stage, there are still numerous issues impeding the provision of nanocurcumin as a possible therapeutic option. To support the science, further work is necessary to develop curcumin as a viable anti-cancer adjuvant. In this review, we cover the various curcumin nanoformulations and nanocurcumin implications for therapeutic uses for cancer, as well as the current state of clinical studies and patents. We further address the knowledge gaps and future research orientations required to develop curcumin as a feasible treatment candidate.


Assuntos
Antineoplásicos , Curcumina , Nanopartículas , Neoplasias , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Farmacêuticos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Disponibilidade Biológica , Curcumina/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico
15.
Turk J Pharm Sci ; 19(3): 239-245, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35773976

RESUMO

Objectives: Gemini surfactant nanocurcumin (Gemini-Cur) is a novel formulation of Curcumin (Cur) with dramatic suppressive effects on cancer cells. Here, we investigated the cancer effects of Gemini-Cur in a human gastric adenocarcinoma cell-line (AGS) through the evaluation of the expression of long non-coding RNAs colon cancer-associated transcript-2 (CCAT2) and its downstream c-Myc as known oncogenic modulators of tumorigenesis. Materials and Methods: The AGS cells were treated with Gemini-Cur and pure Cur in a time- and dose-dependent manner. The toxicity of Gemini-Cur was studied using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and scratch tests. Furthermore, real-time polymerase chain reaction and Western blotting techniques were employed to evaluate the expression of genes. Results: Gemini-Cur significantly affected the viability of AGS cells in a dose- and time-dependent manner with inhibitory concentration 50 values of 59.32, 40.88, and 19.63 µM during 24, 48, and 72 h, respectively. Our findings showed that Gemini-Cur effectively decreased the expression levels of lnc-CCAT2 and c-Myc genes. Western blotting analysis also confirmed the down-regulation of c-Myc in treated samples compared to controls. Conclusion: Gemini-Cur attenuates the proliferation of AGS cells partly through modulation of the lncCCAT2-related pathway.

16.
Molecules ; 27(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684411

RESUMO

Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. The gemini nanoparticle formulation of polyphenolic curcumin significantly inhibits the viability of cancer cells. However, the molecular mechanisms and pathways underlying its toxicity in colon cancer are unclear. Here, we aimed to uncover the possible novel targets of gemini curcumin (Gemini-Cur) on colorectal cancer and related cellular pathways. After confirming the cytotoxic effect of Gemini-Cur by MTT and apoptotic assays, RNA sequencing was employed to identify differentially expressed genes (DEGs) in HCT-116 cells. On a total of 3892 DEGs (padj < 0.01), 442 genes showed a log2 FC >|2| (including 244 upregulated and 198 downregulated). Gene ontology (GO) enrichment analysis was performed. Protein−protein interaction (PPI) and gene-pathway networks were constructed by using STRING and Cytoscape. The pathway analysis showed that Gemini-Cur predominantly modulates pathways related to the cell cycle. The gene network analysis revealed five central genes, namely GADD45G, ATF3, BUB1B, CCNA2 and CDK1. Real-time PCR and Western blotting analysis confirmed the significant modulation of these genes in Gemini-Cur-treated compared to non-treated cells. In conclusion, RNA sequencing revealed novel potential targets of curcumin on cancer cells. Further studies are required to elucidate the molecular mechanism of action of Gemini-Cur regarding the modulation of the expression of hub genes.


Assuntos
Neoplasias do Colo , Curcumina , Biologia Computacional , Curcumina/farmacologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Polifenóis/farmacologia , Mapas de Interação de Proteínas , Análise de Sequência de RNA , Transcriptoma
17.
Molecules ; 27(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35566271

RESUMO

Triple Negative Breast Cancer (TNBC) is the aggressive and lethal type of breast malignancy that develops resistance to current therapies. Combination therapy has proven to be an effective strategy on TNBC. We aimed to study whether the nano-formulation of polyphenolic curcumin (Gemini-Cur) would affect the cisplatin-induced toxicity in MDA-MB-231 breast cancer cells. MDA-MB-231 cells were treated with Gemini-Cur, cisplatin and combination of Gemini-Cur/Cisplatin in a time- and dose-dependent manner. Cell viability was studied by using MTT, fluorescence microscopy and cell cycle assays. The mode of death was also determined by Hoechst staining and annexin V-FITC. Real-time PCR and western blotting were employed to detect the expression of BAX and BCL-2 genes. Our data demonstrated that Gemini-Cur significantly sensitizes cancer cells to cisplatin (combination index ≤ 1) and decreases IC50 values in comparison with Gemini-cur or cisplatin. Further studies confirmed that Gemini-Cur/Cisplatin suppresses cancer cell growth through induction of apoptosis (p < 0.001). In conclusion, the data confirm the synergistic effect of polyphenolic curcumin on cisplatin toxicity and provide attractive strategy to attain its apoptotic effect on TNBC.


Assuntos
Antineoplásicos , Neoplasias da Mama , Curcumina , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Feminino , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismo
18.
Anticancer Agents Med Chem ; 22(11): 2181-2188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34773965

RESUMO

BACKGROUND: Gemini Curcumin (Gemini-Cur) is the latest nanoformulation of curcumin with a significant apoptotic effect on cancer cell lines. OBJECTIVE: This in vitro study aims to evaluate the apoptotic effects of Gemini-Cur toward MDA-MB-468 breast cancer cell lines and further the related mechanism of apoptosis. METHODS: The cytotoxicity of Gemini-Cur toward MDA-MB-468 cell lines was tested using MTT assay. Furthermore, the expression ratio of Bax/Bcl-2 was evaluated by qRT-PCR. Consequently, the protein expression of Bax/Bcl-2, survivin, and caspase-3 was measured using western blotting. RESULTS: Having treated MDA-MB-468 cell lines with Gemini-Cur, the IC50 values were found to be 44.44 and 31.63 µM at 24 and 48 h, respectively. Our findings showed that Gemini-Cur significantly suppresses cancer cell proliferation in a time- and dose-dependent manner. Furthermore, the data revealed that curcumin nanoformulation induces apoptosis in MDA-MB-468 cells through modulation of the expression of Bax, Bcl-2, Survivin, and Caspase-3. CONCLUSION: The data of the current study propose that Gemini-Cur can be considered a promising candidate against triple-negative breast cancer.


Assuntos
Neoplasias da Mama , Curcumina , Neoplasias de Mama Triplo Negativas , Apoptose , Neoplasias da Mama/tratamento farmacológico , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Curcumina/farmacologia , Feminino , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Survivina , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
19.
Mol Biol Rep ; 48(11): 7215-7222, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34623595

RESUMO

INTRODUCTION: Curcumin is a polyphenolic natural compound, which has demonstrated to possess antioxidant, anti-inflammatory, and anticancer effects in vitro & in vivo. However, its applicability in cancer therapy has been limited due to its poor cellular uptake. Here, we aimed to evaluate the anticancer effect of novel gemini curcumin (Gemini-Cur) on the gastric cancer AGS cells. METHOD: The AGS cancerous and HFF-2 non-cancerous cells were treated with Gemini-Cur and curcumin (Cur) in a time- and dose-dependent manner. Cellular toxicity was studied using MTT, fluorescence microscopy, annexin V/FITC, and cell cycle assays. Additionally, real-time PCR and western blotting were employed to evaluate the expression of Bax, Bcl-2 and survivin genes. RESULTS: Our data indicated that Gemini-Cur is significantly taken into AGS cells compared to Cur. Moreover, the viability of Gemini-Cur treated cells was significantly reduced in a time- and dose-dependent manner (p < 0.001). Gemini-Cur compound induced G2/M cell cycle arrest that was followed by apoptosis in a time-dependent manner (p < 0.0001). DISCUSSION: Taken together, our findings support the idea that Gemini-Cur has the potential to be considered as an anticancer agent.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Curcumina , Neoplasias Gástricas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacocinética , Curcumina/farmacologia , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
20.
Int J Pharm ; 601: 120592, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857585

RESUMO

BACKGROUND: Despite recent advances in therapy, colorectal cancer remains a leading cause of death in affected people. Curcumin is the main bioactive compound of turmeric that has been demonstrated as an effective agent against cancer. However, its poor stability and bioavailability limit therapeutic application. We previously showed that delivery of curcumin by using gemini surfactant nanoparticles called gemini curcumin (Gemini-Cur) could improve its solubility, uptake and toxic effect on breast and ovarian cancer cells. Here, we aimed to investigate the anticancer activity of Gemini-Cur in both p53-mutant and p53-wild type colorectal cancer cells. The toxicity of Gemini-Cur on HT-29 and HCT116 was studied through MTT, uptake kinetics, fluorescence microscopy, annexin V/FITC, and cell cycle assays. Also, real-time PCR and western blotting were performed to evaluate the expression of p53, p21, BAX, BCL-2, and NOXA genes. Our data showed that Gemini-Cur not only enters cells quite rapidly compared to free curcumin crystals, but also suppresses HT-29 and HCT-116 cells proliferation in a time- and dose-dependent manner (p < 0.001). The IC50 values as well as apoptosis assays showed that p53-wild type cells are sensitive to Gemini-Cur. Flow cytometry also revealed that the number of apoptotic cells is dramatically increased in HCT-116 cells earlier than HT-29 cells (p < 0.0001). Gemini-Cur upregulated apoptotic genes including p53 (in both mutant and wild-type forms), p21, NOXA and BAX while decreased anti-apoptotic BCL-2 in mRNA and protein level (p < 0.0001). As a hallmark of apoptosis, the expression ratio of BAX/BCL-2 was significantly increased in all treated cells. Taken together, our findings demonstrated that Gemini-Cur suppresses the proliferation of cancer cells via induction of apoptosis and could be considered as novel nano-formulated phytochemical for cancer targeting.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Curcumina , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Curcumina/farmacologia , Células HCT116 , Humanos , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA