Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(4): 112395, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37099427

RESUMO

Memory CD8 T cells play an important role in the protection against breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whether the route of antigen exposure impacts these cells at a functional level is incompletely characterized. Here, we compare the memory CD8 T cell response against a common SARS-CoV-2 epitope after vaccination, infection, or both. CD8 T cells demonstrate comparable functional capacity when restimulated directly ex vivo, independent of the antigenic history. However, analysis of T cell receptor usage shows that vaccination results in a narrower scope than infection alone or in combination with vaccination. Importantly, in an in vivo recall model, memory CD8 T cells from infected individuals show equal proliferation but secrete less tumor necrosis factor (TNF) compared with those from vaccinated people. This difference is negated when infected individuals have also been vaccinated. Our findings shed more light on the differences in susceptibility to re-infection after different routes of SARS-CoV-2 antigen exposure.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Vacinação , Linfócitos T CD8-Positivos , Fator de Necrose Tumoral alfa
2.
Z Rheumatol ; 81(8): 628-634, 2022 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-35391579

RESUMO

Elucidating the basis of chronic disease courses and the development of appropriate treatment methods for inflammatory diseases still represent a big challenge for medical science, as the mechanisms driving aberrant immune reactions are mostly still unknown. Of particular interest is the identification of checkpoints that regulate the function and differentiation of proinflammatory cells during the pathogenesis, along with methods for modulation of specific checkpoints as a treatment approach. Innate receptors, such as members of the natural killer group 2 family (NKG2X), natural cytotoxicity receptors (NCR) or Toll-like receptors (TLRs), play an important role in modulating the immune response. NKG2 member D (NKG2D) is a potent activating receptor of the immune system, known as a sentinel for cellular danger signals presented by cells exposed to endoplasmic reticulum (ER) stress, cell death or an inflammatory cytokine milieu. NKG2A/C bind the non-classical HLA class I molecule, sense changes in ligand expression associated with malignant transformation and cellular stress and their main function is to send inhibitory or activating signals to NK cells and subsets of T cells. In this review, we present our latest knowledge on the understanding of the role of innate receptors in the context of chronic inflammation and autoimmunity with special emphasis on danger sensor receptors NKG2D and NKG2A/C.


Assuntos
Autoimunidade , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Proteínas de Transporte , Citocinas/metabolismo , Humanos , Inflamação , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores Toll-Like
3.
J Exp Med ; 216(8): 1809-1827, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31142589

RESUMO

CMVs efficiently target MHC I molecules to avoid recognition by cytotoxic T cells. However, the lack of MHC I on the cell surface renders the infected cell susceptible to NK cell killing upon missing self recognition. To counter this, mouse CMV (MCMV) rescues some MHC I molecules to engage inhibitory Ly49 receptors. Here we identify a new viral protein, MATp1, that is essential for MHC I surface rescue. Rescued altered-self MHC I molecules show increased affinity to inhibitory Ly49 receptors, resulting in inhibition of NK cells despite substantially reduced MHC I surface levels. This enables the virus to evade recognition by licensed NK cells. During evolution, this novel viral immune evasion mechanism could have prompted the development of activating NK cell receptors that are specific for MATp1-modified altered-self MHC I molecules. Our study solves a long-standing conundrum of how MCMV avoids recognition by NK cells, unravels a fundamental new viral immune evasion mechanism, and demonstrates how this forced the evolution of virus-specific activating MHC I-restricted Ly49 receptors.


Assuntos
Infecções por Herpesviridae/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Evasão da Resposta Imune/imunologia , Células Matadoras Naturais/imunologia , Muromegalovirus/metabolismo , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Virais/metabolismo , Animais , Antígenos Ly/genética , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Infecções por Herpesviridae/virologia , Antígenos de Histocompatibilidade Classe I/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor 1 Desencadeador da Citotoxicidade Natural/genética
4.
Immunity ; 41(6): 988-1000, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25500367

RESUMO

Group 3 innate lymphoid cells (ILC3s) are defined by the expression of the transcription factor RORγt, which is selectively required for their development. The lineage-specified progenitors of ILC3s and their site of development after birth remain undefined. Here we identified a population of human CD34(+) hematopoietic progenitor cells (HPCs) that express RORγt and share a distinct transcriptional signature with ILC3s. RORγt(+)CD34(+) HPCs were located in tonsils and intestinal lamina propria (LP) and selectively differentiated toward ILC3s. In contrast, RORγt(-)CD34(+) HPCs could differentiate to become either ILC3s or natural killer (NK) cells, with differentiation toward ILC3 lineage determined by stem cell factor (SCF) and aryl hydrocarbon receptor (AhR) signaling. Thus, we demonstrate that in humans RORγt(+)CD34(+) cells are lineage-specified progenitors of IL-22(+) ILC3s and propose that tonsils and intestinal LP, which are enriched both in committed precursors and mature ILC3s, might represent preferential sites of ILC3 lineage differentiation.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Linfócitos/fisiologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Adulto , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Humanos , Imunidade Inata , Interleucinas/metabolismo , Intestinos/imunologia , Células Matadoras Naturais/fisiologia , Análise em Microsséries , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Tonsila Palatina/imunologia , Transdução de Sinais , Interleucina 22
5.
Eur J Immunol ; 44(4): 958-61, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24723169

RESUMO

Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency, which is characterized by abnormal immune system functions caused by the lack of expression of WAS protein (WASp). A higher tumor susceptibility is observed in WAS patients; whether this is a direct consequence of impaired immunosurveillance due to WAS deficiency in immune cells is, however, an open question. In this issue of the European Journal of Immunology, Catucci et al. [Eur. J. Immunol. 2014. 44: 1039-1045] shed light on the link between Was deficiency and immunosurveillance in a tumor-prone mouse model and report a role for the impaired crosstalk between natural killer (NK) cells and dendritic cells (DCs) in mediating this process. The potential mechanisms involved in WASp regulation of NK/DC-mediated immunosurveillance are the focus of this Commentary.


Assuntos
Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Melanoma Experimental/imunologia , Proteína da Síndrome de Wiskott-Aldrich/imunologia , Animais , Humanos
6.
Proc Natl Acad Sci U S A ; 110(41): 16550-5, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24052528

RESUMO

Due to a unique pattern of CD8 T-cell response induced by cytomegaloviruses (CMVs), live attenuated CMVs are attractive candidates for vaccine vectors for a number of clinically relevant infections and tumors. NKG2D is one of the most important activating NK cell receptors that plays a role in costimulation of CD8 T cells. Here we demonstrate that the expression of CD8 T-cell epitope of Listeria monocytogenes by a recombinant mouse CMV (MCMV) expressing the NKG2D ligand retinoic acid early-inducible protein 1-gamma (RAE-1γ) dramatically enhanced the effectiveness and longevity of epitope-specific CD8 T-cell response and conferred protection against a subsequent challenge infection with Listeria monocytogenes. Unexpectedly, the attenuated growth in vivo of the CMV vector expressing RAE-1γ and its capacity to enhance specific CD8 T-cell response were preserved even in mice lacking NKG2D, implying additional immune function for RAE-1γ beyond engagement of NKG2D. Thus, vectors expressing RAE-1γ represent a promising approach in the development of CD8 T-cell-based vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citomegalovirus/imunologia , Vetores Genéticos/imunologia , Evasão da Resposta Imune/imunologia , Proteínas de Membrana/metabolismo , Vacinas Sintéticas/imunologia , Animais , Citomegalovirus/genética , Citometria de Fluxo , Vetores Genéticos/genética , Listeria monocytogenes/imunologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Estatísticas não Paramétricas
7.
Immunity ; 38(6): 1223-35, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23791642

RESUMO

RORγt⁺ innate lymphoid cells (ILCs) are crucial players of innate immune responses and represent a major source of interleukin-22 (IL-22), which has an important role in mucosal homeostasis. The signals required by RORγt⁺ ILCs to express IL-22 and other cytokines have been elucidated only partially. Here we showed that RORγt⁺ ILCs can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORγt⁺ ILCs selectively activated a coordinated proinflammatory program, including tumor necrosis factor (TNF), whereas cytokine stimulation preferentially induced IL-22 expression. However, combined engagement of NKp44 and cytokine receptors resulted in a strong synergistic effect. These data support the concept that NKp44⁺ RORγt⁺ ILCs can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.


Assuntos
Interleucinas/metabolismo , Linfócitos/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Células Cultivadas , Microambiente Celular , Homeostase , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Mucosa/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Tonsila Palatina/citologia , Tonsila Palatina/imunologia , Receptor Cross-Talk , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina 22
8.
J Virol ; 87(12): 6943-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23596286

RESUMO

Varicella-zoster virus (VZV) is the etiological agent of chickenpox and shingles. Due to the virus's restricted host and cell type tropism and the lack of tools for VZV proteomics, it is one of the least-characterized human herpesviruses. We generated 251 monoclonal antibodies (MAbs) against 59 of the 71 (83%) currently known unique VZV proteins to characterize VZV protein expression in vitro and in situ. Using this new set of MAbs, 44 viral proteins were detected by Western blotting (WB) and indirect immunofluorescence (IF); 13 were detected by WB only, and 2 were detected by IF only. A large proportion of viral proteins was analyzed for the first time in the context of virus infection. Our study revealed the subcellular localization of 46 proteins, 14 of which were analyzed in detail by confocal microscopy. Seven viral proteins were analyzed in time course experiments and showed a cascade-like temporal gene expression pattern similar to those of other herpesviruses. Furthermore, selected MAbs tested positive on human skin lesions by using immunohistochemistry, demonstrating the wide applicability of the MAb collection. Finally, a significant portion of the VZV-specific antibodies reacted with orthologs of simian varicella virus (SVV), thus enabling the systematic analysis of varicella in a nonhuman primate model system. In summary, this study provides insight into the potential function of numerous VZV proteins and novel tools to systematically study VZV and SVV pathogenesis.


Assuntos
Anticorpos Monoclonais/imunologia , Herpesvirus Humano 3/metabolismo , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Varicela/virologia , Células Epiteliais/virologia , Técnica Indireta de Fluorescência para Anticorpo , Herpes Zoster/virologia , Herpesvirus Humano 3/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteômica , Pele/imunologia , Pele/virologia
9.
J Virol ; 87(3): 1720-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23175377

RESUMO

Cleavage of human cytomegalovirus (HCMV) genomes as well as their packaging into capsids is an enzymatic process mediated by viral proteins and therefore a promising target for antiviral therapy. The HCMV proteins pUL56 and pUL89 form the terminase and play a central role in cleavage-packaging, but several additional viral proteins, including pUL51, had been suggested to contribute to this process, although they remain largely uncharacterized. To study the function of pUL51 in infected cells, we constructed HCMV mutants encoding epitope-tagged versions of pUL51 and used a conditionally replicating virus (HCMV-UL51-ddFKBP), in which pUL51 levels could be regulated by a synthetic ligand. In cells infected with HCMV-UL51-ddFKBP, viral DNA replication was not affected when pUL51 was knocked down. However, no unit-length genomes and no DNA-filled C capsids were found, indicating that cleavage of concatemeric HCMV DNA and genome packaging into capsids did not occur in the absence of pUL51. pUL51 was expressed mainly with late kinetics and was targeted to nuclear replication compartments, where it colocalized with pUL56 and pUL89. Upon pUL51 knockdown, pUL56 and pUL89 were no longer detectable in replication compartments, suggesting that pUL51 is needed for their correct subnuclear localization. Moreover, pUL51 was found in a complex with the terminase subunits pUL56 and pUL89. Our data provide evidence that pUL51 is crucial for HCMV genome cleavage-packaging and may represent a third component of the viral terminase complex. Interference with the interactions between the terminase subunits by antiviral drugs could be a strategy to disrupt the HCMV replication cycle.


Assuntos
Citomegalovirus/fisiologia , DNA Viral/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Células Cultivadas , Citomegalovirus/enzimologia , Endodesoxirribonucleases/genética , Humanos , Hidrólise , Proteínas Virais/genética , Proteínas Estruturais Virais/genética
10.
PLoS Pathog ; 8(2): e1002510, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22346748

RESUMO

Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the ∼1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 3'-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 3'-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 3'-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo.


Assuntos
Regiões 3' não Traduzidas/genética , Infecções por Citomegalovirus/virologia , MicroRNAs/metabolismo , Muromegalovirus/fisiologia , RNA Viral/metabolismo , Replicação Viral/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sítios de Ligação , Linhagem Celular , Regulação para Baixo/genética , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , MicroRNAs/genética , Muromegalovirus/genética , Mutação , Processamento Pós-Transcricional do RNA , Estabilidade de RNA/genética , RNA Viral/genética , Análise de Sequência de RNA
11.
J Exp Med ; 207(12): 2663-73, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-21078887

RESUMO

Cytomegaloviruses (CMVs) are renowned for interfering with the immune system of their hosts. To sidestep antigen presentation and destruction by CD8(+) T cells, these viruses reduce expression of major histocompatibility complex class I (MHC I) molecules. However, this process sensitizes the virus-infected cells to natural killer (NK) cell-mediated killing via the "missing self" axis. Mouse cytomegalovirus (MCMV) uses m152 and m06 encoded proteins to inhibit surface expression of MHC I molecules. In addition, it encodes another protein, m04, which forms complexes with MHC I and escorts them to the cell surface. This mechanism is believed to prevent NK cell activation and killing by restoring the "self" signature and allowing the engagement of inhibitory Ly49 receptors on NK cells. Here we show that MCMV lacking m04 was attenuated in an NK cell- and MHC I-dependent manner. NK cell-mediated control of the infection was dependent on the presence of NK cell subsets expressing different inhibitory Ly49 receptors. In addition to providing evidence for immunoevasion strategies used by CMVs to avoid NK cell control via the missing-self pathway, our study is the first to demonstrate that missing self-dependent NK cell activation is biologically relevant in the protection against viral infection in vivo.


Assuntos
Proteínas de Transporte/imunologia , Glicoproteínas/imunologia , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Muromegalovirus/imunologia , Proteínas Virais/imunologia , Animais , Citotoxicidade Imunológica , Antígenos H-2/imunologia , Ativação Linfocitária , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/fisiologia , Proteínas Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA