Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Pharmaceutics ; 16(9)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339264

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and ongoing challenges in CAR-T therapy. We highlight the transformative potential of nanotechnology in enhancing CAR-T therapy by improving targeting precision, modulating the immune-suppressive tumor microenvironment, and overcoming physical barriers. Nanotechnology facilitates efficient CAR gene delivery into T cells, boosting transfection efficiency and potentially reducing therapy costs. Moreover, nanotechnology offers innovative solutions to mitigate cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cutting-edge nanotechnology platforms for real-time monitoring of CAR-T cell activity and cytokine release are also discussed. By integrating these advancements, we aim to provide valuable insights and pave the way for the next generation of CAR-T cell therapies to overcome current limitations and enhance therapeutic outcomes.

2.
Cancers (Basel) ; 16(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39123351

RESUMO

Apoptosis induction with taxanes or anthracyclines is the primary therapy for TNBC. Cancer cells can develop resistance to anticancer drugs, causing them to recur and metastasize. Therefore, non-apoptotic cell death inducers could be a potential treatment to circumvent apoptotic drug resistance. In this study, we discovered two novel compounds, TPH104c and TPH104m, which induced non-apoptotic cell death in TNBC cells. These lead compounds were 15- to 30-fold more selective in TNBC cell lines and significantly decreased the proliferation of TNBC cells compared to that of normal mammary epithelial cell lines. TPH104c and TPH104m induced a unique type of non-apoptotic cell death, characterized by the absence of cellular shrinkage and the absence of nuclear fragmentation and apoptotic blebs. Although TPH104c and TPH104m induced the loss of the mitochondrial membrane potential, TPH104c- and TPH104m-induced cell death did not increase the levels of cytochrome c and intracellular reactive oxygen species (ROS) and caspase activation, and cell death was not rescued by incubating cells with the pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). Furthermore, TPH104c and TPH104m significantly downregulated the expression of the mitochondrial fission protein, DRP1, and their levels determined their cytotoxic efficacy. Overall, TPH104c and TPH104m induced non-apoptotic cell death, and further determination of their cell death mechanisms will aid in the development of new potent and efficacious anticancer drugs to treat TNBC.

3.
Front Pharmacol ; 15: 1417399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119607

RESUMO

Multiwalled carbon nanotubes (MWCNTs) are at the forefront of nanotechnology-based advancements in cancer therapy, particularly in the field of targeted drug delivery. The nanotubes are characterized by their concentric graphene layers, which give them outstanding structural strength. They can deliver substantial doses of therapeutic agents, potentially reducing treatment frequency and improving patient compliance. MWCNTs' diminutive size and modifiable surface enable them to have a high drug loading capacity and penetrate biological barriers. As a result of the extensive research on these nanomaterials, they have been studied extensively as synthetic and chemically functionalized molecules, which can be combined with various ligands (such as folic acid, antibodies, peptides, mannose, galactose, polymers) and linkers, and to deliver anticancer drugs, including but not limited to paclitaxel, docetaxel, cisplatin, doxorubicin, tamoxifen, methotrexate, quercetin and others, to cancer cells. This functionalization facilitates selective targeting of cancer cells, as these ligands bind to specific receptors overexpressed in tumor cells. By sparing non-cancerous cells and delivering the therapeutic payload precisely to cancer cells, this therapeutic payload delivery ability reduces chemotherapy systemic toxicity. There is great potential for MWCNTs to be used as targeted delivery systems for drugs. In this review, we discuss techniques for functionalizing and conjugating MWCNTs to drugs using natural and biomacromolecular linkers, which can bind to the cancer cells' receptors/biomolecules. Using MWCNTs to administer cancer drugs is a transformative approach to cancer treatment that combines nanotechnology and pharmacotherapy. It is an exciting and rich field of research to explore and optimize MWCNTs for drug delivery purposes, which could result in significant benefits for cancer patients.

4.
Cancer Rep (Hoboken) ; 7(4): e2074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627904

RESUMO

BACKGROUND: Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM: This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS: Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION: This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.


Assuntos
Neoplasias da Mama , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Transtornos dos Movimentos , Humanos , Feminino , Ciclofosfamida/efeitos adversos , Antraciclinas/uso terapêutico , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Antibióticos Antineoplásicos , Doxorrubicina/farmacologia , Neoplasias da Mama/patologia , Transtornos dos Movimentos/tratamento farmacológico
5.
ACS Appl Mater Interfaces ; 16(11): 13509-13524, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466024

RESUMO

Elesclomol (ES), a copper-binding ionophore, forms an ES-Cu complex with copper ions (Cu(II)). ES-Cu has been proven to induce mitochondrial oxidative stress and copper-dependent cell death (cuprotosis). However, ES-Cu is poorly water-soluble, and its delivery to various cancer cells is a challenge. Herein, we designed a d-α-tocopherol polyethylene glycol 1000 succinate/chondroitin sulfate-cholic acid (TPGS/CS-CA)-based micellar nanoparticle for delivering the ES-Cu complex to various cancer cell lines to demonstrate its efficacy as an anticancer agent. The ES-Cu nanoparticles exerted high encapsulation efficiency and excellent serum stability. The anticancer efficacy of ES-Cu nanoparticles was evaluated in various drug-sensitive cell lines (DU145, PC3, and A549) and drug-resistant cell lines (DU145TXR, PC3TXR, and A549TXR). The results showed that ES-Cu nanoparticles exerted potent anticancer activities in both drug-sensitive and drug-resistant cell lines. The Western blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and molecular docking results suggested that ES-Cu is not a substrate for P glycoprotein (P-gp), which is an efflux transporter potentially causing multidrug resistance (MDR) in cancer cells. ES-Cu nanoparticles could bypass P-gp without compromising their activity, indicating that they may overcome MDR in cancer cells and provide a novel therapeutic strategy. Additionally, the extracellular matrix of ES-Cu nanoparticles-pretreated drug-resistant cells could polarize Raw 264.7 macrophages into the M1 phenotype. Therefore, our TPGS/CS-CA-based ES-Cu nanoparticles provide an effective method of delivering the ES-Cu complex, a promising strategy to overcome MDR in cancer therapy with potential immune response stimulation.


Assuntos
Antineoplásicos , Hidrazinas , Nanopartículas , Neoplasias , Cobre/química , Simulação de Acoplamento Molecular , Antineoplásicos/química , Nanopartículas/química , Resistência a Múltiplos Medicamentos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/farmacologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
6.
Pharmaceutics ; 15(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37376016

RESUMO

Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF's anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate-copper complex (CuET).

7.
Heliyon ; 9(6): e16688, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37313143

RESUMO

The aberrant activation of Wnt/ß-catenin signaling in tumor cells and immune cells in the tumor microenvironment (TME) promotes malignant transformation, metastasis, immune evasion, and resistance to cancer treatments. The increased Wnt ligand expression in TME activates ß-catenin signaling in antigen (Ag)-presenting cells (APCs) and regulates anti-tumor immunity. Previously, we showed that activation of Wnt/ß-catenin signaling in dendritic cells (DCs) promotes induction of regulatory T cell responses over anti-tumor CD4+ and CD8+ effector T cell responses and promotes tumor progression. In addition to DCs, tumor-associated macrophages (TAMs) also serve as APCs and regulate anti-tumor immunity. However, the role of ß-catenin activation and its effect on TAM immunogenicity in TME is largely undefined. In this study, we investigated whether inhibiting ß-catenin in TME-conditioned macrophages promotes immunogenicity. Using nanoparticle formulation of XAV939 (XAV-Np), a tankyrase inhibitor that promotes ß-catenin degradation, we performed in vitro macrophage co-culture assays with melanoma cells (MC) or melanoma cell supernatants (MCS) to investigate the effect on macrophage immunogenicity. We show that XAV-Np-treatment of macrophages conditioned with MC or MCS significantly upregulates the cell surface expression of CD80 and CD86 and suppresses the expression of PD-L1 and CD206 compared to MC or MCS-conditioned macrophages treated with control nanoparticle (Con-Np). Further, XAV-Np-treated macrophages conditioned with MC or MCS significantly increased IL-6 and TNF-α production, with reduced IL-10 production compared to Con-Np-treated macrophages. Moreover, the co-culture of MC and XAV-Np-treated macrophages with T cells resulted in increased CD8+ T cell proliferation compared to Con-Np-treated macrophages. These data suggest that targeted ß-catenin inhibition in TAMs represents a promising therapeutic approach to promote anti-tumor immunity.

8.
Biomolecules ; 13(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37238613

RESUMO

Therapeutic strategies for ARID1A-mutant ovarian cancers are limited. Higher basal reactive oxygen species (ROS) and lower basal glutathione (GSH) empower the aggressive proliferation ability and strong metastatic property of OCCCs, indicated by the increased marker of epithelial-mesenchymal transition (EMT) and serving the immunosuppressive microenvironment. However, the aberrant redox homeostasis also empowers the sensitivity of DQ-Lipo/Cu in a mutant cell line. DQ, a carbamodithioic acid derivative, generates dithiocarbamate (DDC) in response to ROS, and the chelation of Cu and DDC further generates ROS and provides a ROS cascade. Besides, quinone methide (QM) released by DQ targets the vulnerability of GSH; this effect, plus the increase of ROS, destroys the redox homeostasis and causes cancer cell death. Also importantly, the formed Cu(DDC)2 is a potent cytotoxic anti-cancer drug that successfully induces immunogenic cell death (ICD). The synergistic effect of EMT regulation and ICD will contribute to managing cancer metastasis and possible drug resistance. In summary, our DQ-Lipo/Cu shows promising inhibitory effects in cancer proliferation, EMT markers, and "heat" the immune response.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Cobre/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Lipossomos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glutationa/metabolismo , Microambiente Tumoral , Proteínas de Ligação a DNA , Fatores de Transcrição/genética
9.
Int J Pharm ; 640: 123043, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37172631

RESUMO

Many tumors dysregulate Wnt/ß-catenin pathway to promote stem-cell-like phenotype, tumorigenesis, immunosuppression, and resistance to targeted cancer immunotherapies. Therefore, targeting this pathway is a promising therapeutic approach to suppress tumor progression and elicit robust anti-tumor immunity. In this study, using a nanoparticle formulation for XAV939 (XAV-Np), a tankyrase inhibitor that promotes ß-catenin degradation, we investigated the effect of ß-catenin inhibition on melanoma cell viability, migration, and tumor progression using a mouse model of conjunctival melanoma. XAV-Nps were uniform and displayed near-spherical morphology with size stability for upto 5 days. We show that XAV-Np treatment of mouse melanoma cells significantly suppresses cell viability, tumor cell migration, and tumor spheroid formation compared to control nanoparticle (Con-Np) or free XAV939-treated groups. Further, we demonstrate that XAV-Np promotes immunogenic cell death (ICD) of tumor cells with a significant extracellular release or expression of ICD molecules, including high mobility group box 1 protein (HMGB1), calreticulin (CRT), and adenosine triphosphate (ATP). Finally, we show that local intra-tumoral delivery of XAV-Nps during conjunctival melanoma progression significantly suppresses tumor size and conjunctival melanoma progression compared to Con-Nps-treated animals. Collectively, our data suggest that selective inhibition of ß-catenin in tumor cells using nanoparticle-based targeted delivery represents a novel approach to suppress tumor progression through increased tumor cell ICD.


Assuntos
Melanoma , beta Catenina , Animais , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacologia , Morte Celular Imunogênica , Via de Sinalização Wnt , Melanoma/tratamento farmacológico , Linhagem Celular Tumoral
10.
Cancer Rep (Hoboken) ; 6 Suppl 1: e1830, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150853

RESUMO

BACKGROUND: Choosing the most effective chemotherapeutic agent with safest side effect profile is a common challenge in cancer treatment. Although there are standardized chemotherapy protocols in place, protocol changes made after extensive clinical trials demonstrate significant improvement in the efficacy and tolerability of certain drugs. The pharmacokinetics, pharmacodynamics, and tolerance of anti-cancer medications are all highly individualized. A driving force behind these differences lies within a person's genetic makeup. RECENT FINDINGS: Pharmacogenomics, the study of how an individual's genes impact the processing and action of a drug, can optimize drug responsiveness and reduce toxicities by creating a customized medication regimen. However, these differences are rarely considered in the initial determination of standardized chemotherapeutic protocols and treatment algorithms. Because pharmacoethnicity is influenced by both genetic and nongenetic variables, clinical data highlighting disparities in the frequency of polymorphisms between different ethnicities is steadily growing.  Recent data suggests that ethnic variations in the expression of allelic variants may result in different pharmacokinetic properties of the anti-cancer medication. In this article, the clinical outcomes of various chemotherapy classes in patients of different ethnicities were reviewed. CONCLUSION: Genetic and nongenetic variables contribute to the interindividual variability in response to chemotherapeutic drugs. Considering pharmacoethnicity in the initial determination of standard chemotherapeutic protocols and treatment algorithms can lead to better clinical outcomes of patients of different ethnicities.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Polimorfismo Genético
11.
Ann Med Surg (Lond) ; 85(4): 1216-1219, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113868

RESUMO

Herpes simplex encephalitis results from either primary infection with the herpes simplex virus (HSV) or reactivation of latent HSV residing within the nuclei of sensory neurons. Opioid's administration is known to reactivate HSV infection. Case presentation: We report a 46-year-old male who was in a rehabilitation center for 17 days for abusing morphine for 2 years. Discussion: Chronic morphine use weakens immune system thereby, making body prone for development of infection. Opioids may reactivate HSV infection because of their immunosuppressive function. Conclusion: Herpes simplex encephalitis is a potentially fatal condition but can be treated with early diagnosis and intervention.

12.
Chemosphere ; 329: 138535, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37011820

RESUMO

Chromium (Cr) doped CdO films are chemically sprayed and are characterized by their optical, electrical, structural, and microstructural characteristics. The thickness of the films is determined by spectroscopic ellipsometry. The cubic crystal structure with a superior growth along (111) plane of the spray-deposited films is confirmed from the powder X-ray diffraction (XRD) analysis. XRD studies also suggested that some of the Cd2+ ions were substituted by Cr3+ ions, and the solubility of Cr in CdO is minimal, to be around ∼0.75 wt%. The analysis by atomic force microscopy shows uniform distribution of grains throughout the surface, whose roughness is varied from 33 to 13.9 nm concerning Cr-doping concentration. The microstructures from the field emission scanning electron microscope reveal a smooth surface. The elemental composition is examined using an energy dispersive spectroscope. The micro-Raman studies carried out in room temperature endorse the presence of metal oxide (Cd-O) bond vibrations. Transmittance spectra are obtained using UV-vis-NIR spectrophotometer, and the band gap values are estimated from the absorption coefficient. The films show high optical transmittance (>75%) in vis-NIR region. A maximum optical band gap of 2.35 eV is obtained from 1.0 wt% Cr-doping. The electrical measurement (Hall analysis) confirmed the degeneracy nature and n-type semi-conductivity. The carrier density, carrier mobility, and dc-conductivity are increased for higher Cr-dopant percentage. High mobility (85 cm2V-1s-1) is observed for 0.75 wt% Cr-doping. The 0.75 wt% Cr-doping show a remarkable response to formaldehyde gas (74.39%).


Assuntos
Cádmio , Cromo , Difração de Raios X , Óxidos/química , Espectrometria por Raios X
13.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36986532

RESUMO

Various formulations of polymeric micelles, tiny spherical structures made of polymeric materials, are currently being investigated in preclinical and clinical settings for their potential as nanomedicines. They target specific tissues and prolong circulation in the body, making them promising cancer treatment options. This review focuses on the different types of polymeric materials available to synthesize micelles, as well as the different ways that micelles can be tailored to be responsive to different stimuli. The selection of stimuli-sensitive polymers used in micelle preparation is based on the specific conditions found in the tumor microenvironment. Additionally, clinical trends in using micelles to treat cancer are presented, including what happens to micelles after they are administered. Finally, various cancer drug delivery applications involving micelles are discussed along with their regulatory aspects and future outlooks. As part of this discussion, we will examine current research and development in this field. The challenges and barriers they may have to overcome before they can be widely adopted in clinics will also be discussed.

14.
Pharmaceutics ; 15(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986762

RESUMO

This study aimed to develop a microemulsion formulation for topical delivery of Diacetyl Boldine (DAB) and to evaluate its cytotoxicity against melanoma cell line (B16BL6) in vitro. Using a pseudo-ternary phase diagram, the optimal microemulsion formulation region was identified, and its particle size, viscosity, pH, and in vitro release characteristics were determined. Permeation studies were performed on excised human skin using Franz diffusion cell assembly. The cytotoxicity of the formulations on B16BL6 melanoma cell lines was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. Two formulation compositions were selected based on the higher microemulsion area of the pseudo-ternary phase diagrams. The formulations showed a mean globule size of around 50 nm and a polydispersity index of <0.2. The ex vivo skin permeation study demonstrated that the microemulsion formulation exhibited significantly higher skin retention levels than the DAB solution in MCT oil (Control, DAB-MCT). Furthermore, the formulations showed substantially higher cytotoxicity toward B16BL6 cell lines than the control formulation (p < 0.001). The half-maximal inhibitory concentrations (IC50) of F1, F2, and DAB-MCT formulations against B16BL6 cells were calculated to be 1 µg/mL, 10 µg/mL, and 50 µg/mL, respectively. By comparison, the IC50 of F1 was 50-fold lower than that of the DAB-MCT formulation. The results of the present study suggest that microemulsion could be a promising formulation for the topical administration of DAB.

17.
Pharmaceutics ; 16(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38258072

RESUMO

The tumor microenvironment (TME) is pivotal in tumor growth and metastasis, aligning with the "Seed and Soil" theory. Within the TME, tumor-associated macrophages (TAMs) play a central role, profoundly influencing tumor progression. Strategies targeting TAMs have surfaced as potential therapeutic avenues, encompassing interventions to block TAM recruitment, eliminate TAMs, reprogram M2 TAMs, or bolster their phagocytic capabilities via specific pathways. Nanomaterials including inorganic materials, organic materials for small molecules and large molecules stand at the forefront, presenting significant opportunities for precise targeting and modulation of TAMs to enhance therapeutic efficacy in cancer treatment. This review provides an overview of the progress in designing nanoparticles for interacting with and influencing the TAMs as a significant strategy in cancer therapy. This comprehensive review presents the role of TAMs in the TME and various targeting strategies as a promising frontier in the ever-evolving field of cancer therapy. The current trends and challenges associated with TAM-based therapy in cancer are presented.

18.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364286

RESUMO

Multiwalled carbon nanotubes (MWCNTs) are elongated, hollow cylindrical nanotubes made of sp2 carbon. MWCNTs have attracted significant attention in the area of drug delivery due to their high drug-loading capacity and large surface area. Furthermore, they can be linked to bioactive ligands molecules via covalent and noncovalent bonds that allow for the targeted delivery of anticancer drugs such as doxorubicin. The majority of methodologies reported for the functionalization of MWCNTs for drug delivery are quite complex and use expensive linkers and ligands. In the present study, we report a simple, cost-effective approach for functionalizing MWCNTs with the carbohydrate ligands, galactose (GA), mannose (MA) and lactose (LA), using lysine as a linker. The doxorubicin (Dox)-loaded functionalized MWCNTs were characterized using FT-IR, NMR, Raman, XRD and FE-SEM. The drug-loaded MWCNTs were evaluated for drug loading, drug release and cell toxicity in vitro, in breast cancer cells. The results indicated that the carbohydrate-modified lysinated MWCNTs had greater Dox loading capacity, compared to carboxylated MWCNTs (COOHMWCNTs) and lysinated MWCNTs (LyMWCNTs). In vitro drug release experiments indicated that the carbohydrate functionalized LyMWCNTs had higher Dox release at pH 5.0, compared to the physiological pH of 7.4, over 120 h, indicating that they are suitable candidates for targeting the tumor microenvironment as a result of their sustained release profile of Dox. Doxorubicin-loaded galactosylated MWCNTs (Dox-GAMWCNTs) and doxorubicin loaded mannosylated MWCNTs (Dox-MAMWCNTs) had greater anticancer efficacy and cellular uptake, compared to doxorubicin-loaded lactosylated MWCNTs (Dox-LAMWCNTs) and pure Dox, in MDA-MB231 and MCF7 breast cancer cells. However, neither the ligand conjugated multiwall blank carbon nanotubes (GAMWCNTs, MAMWCNTs and LAMWCNTs) nor the lysinated multiwalled blank carbon nanotubes produced significant toxicity in the normal cells. Our results suggest that sugar-tethered multiwalled carbon nanotubes, especially the galactosylated (Dox-GAMWCNTs) and mannosylated (Dox-MAMWCNTs) formulations, may be used to improve the targeted delivery of anticancer drugs to breast cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanotubos de Carbono , Humanos , Feminino , Nanotubos de Carbono/química , Ligantes , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Microambiente Tumoral
19.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430965

RESUMO

Hispolon, a phenolic pigment isolated from the mushroom species Phellinus linteus, has been investigated for anti-inflammatory, antioxidant, and anticancer properties; however, low solubility and poor bioavailability have limited its potential clinical translation. In this study, the inclusion complex of hispolon with Sulfobutylether-ß-cyclodextrin (SBEßCD) was characterized, and the Hispolon-SBEßCD Complex (HSC) was included within the sterically stabilized liposomes (SL) to further investigate its anticancer activity against melanoma cell lines. The HSC-trapped-Liposome (HSC-SL) formulation was investigated for its sustained drug delivery and enhanced cytotoxicity. The inclusion complex in the solid=state was confirmed by a Job's plot analysis, molecular modeling, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Proton nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). The HSC-SL showed no appreciable deviation in size (<150 nm) and polydispersity index (<0.2) and improved drug encapsulation efficiency (>90%) as compared to control hispolon liposomes. Individually incorporated hispolon and SBEßCD in the liposomes (H-CD-SL) was not significant in loading the drug in the liposomes, compared to HSC-SL, as a substantial amount of free drug was separated during dialysis. The HSC-SL formulation showed a sustained release compared to hispolon liposomes (H-SLs) and Hispolon-SBEßCD liposomes (H-CD-SLs). The anticancer activity on melanoma cell lines (B16BL6) of HSC and HSC-SL was higher than in H-CD-SL and hispolon solution. These findings suggest that HSC inclusion in the HSC-SL liposomes stands out as a potential formulation approach for enhancing drug loading, encapsulation, and chemotherapeutic efficiency of hispolon and similar water insoluble drug molecules.


Assuntos
Ciclodextrinas , Melanoma , Humanos , Lipossomos/química , Diálise Renal , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico
20.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233061

RESUMO

Daunorubicin (DNR) and cardiolipin (CL) were co-delivered using thermosensitive liposomes (TSLs). 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-myristoyl-2-stearoyl-sn-glycero-3-phosphocholine (MSPC), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] or DSPE-mPEG (2000) and CL were used in the formulation of liposomes at a molar ratio of 57:40:30:3:20, respectively. CL forms raft-like microdomains that may relocate and change lipid organization of the outer and inner mitochondrial membranes. Such transbilayer lipid movement eventually leads to membrane permeabilization. TSLs were prepared by thin-film hydration (drug:lipid ratio 1:5) where DNR was encapsulated within the aqueous core of the liposomes and CL acted as a component of the lipid bilayer. The liposomes exhibited high drug encapsulation efficiency (>90%), small size (~115 nm), narrow size distribution (polydispersity index ~0.12), and a rapid release profile under the influence of mild hyperthermia. The liposomes also exhibited ~4-fold higher cytotoxicity against MDA-MB-231 cells compared to DNR or liposomes similar to DaunoXome® (p < 0.001). This study provides a basis for developing a co-delivery system of DNR and CL encapsulated in liposomes for treatment of breast cancer.


Assuntos
Neoplasias da Mama , Lipossomos , Neoplasias da Mama/tratamento farmacológico , Cardiolipinas , Colesterol , Daunorrubicina/farmacologia , Feminino , Humanos , Bicamadas Lipídicas , Células MCF-7 , Fosforilcolina , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA