Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 967: 176390, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336013

RESUMO

The deletion of a phenylalanine at position 508 (p.Phe508del) in the CFTR anion channel is the most prevalent variant in people with Cystic Fibrosis (CF). This variant impairs folding and stability of the CF transmembrane conductance regulator (CFTR) protein, resulting in its defective trafficking and premature degradation. Over the last years, therapeutic accomplishments have been attained in developing small molecules that partially correct p.Phe508del-CFTR defects; however, the mechanism of action (MoA) of these compounds has only started to be uncovered. In this study, we employed biochemical, fluorescence microscopy, and functional assays to examine the efficacy and properties of PTI-801, a newly developed p.Phe508del-CFTR corrector. To exploit its MoA, we assessed PTI-801 effects in combination with low temperature, genetic revertants of p.Phe508del-CFTR (the in cis p.Val510Asp, p.Gly550Glu, p.Arg1070Trp, and 4RK) and other correctors. Our results demonstrated that PTI-801 rescues p.Phe508del-CFTR processing, PM trafficking, and channel function (upon agonist stimulation) with greater correction effects in combination with ABBV-2222, FDL-169, VX-661, or VX-809, but not with VX-445. Although PTI-801 exhibited no potentiator activity on low temperature- and corrector-rescued p.Phe508del-CFTR, this compound displayed similar behavior to that of VX-445 on genetic revertants. Such evidence associated with the lack of additivity when PTI-801 and VX-445 were combined indicates that they share a common binding site to correct p.Phe508del-CFTR defects. Despite the high efficacy of PTI-801 in combination with ABBV-2222, FDL-169, VX-661, or VX-809, these dual corrector combinations only partially restored p.Phe508del-CFTR conformational stability, as shown by the lower half-life of the mutant protein compared to that of WT-CFTR. In summary, PTI-801 likely shares a common MoA with VX-445 in rescuing p.Phe508del-CFTR, thus being a feasible alternative for the development of novel corrector combinations with greater capacity to rescue mutant CFTR folding and stability.


Assuntos
Benzoatos , Benzopiranos , Regulador de Condutância Transmembrana em Fibrose Cística , Pirazóis , Piridinas , Pirrolidinas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Mutação , Aminofenóis/uso terapêutico
2.
J Pers Med ; 14(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38248793

RESUMO

The implementation of cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has been attaining remarkable therapeutic outcomes for CF, a life-threatening autosomal recessive genetic disease. However, there is elevated CFTR allelic heterogeneity, and various individuals carrying (ultra)rare CF genotypes remain without any approved modulator therapy. Novel translational model systems based on individuals' own cells/tissue are now available and can be used to interrogate in vitro CFTR modulator responses and establish correlations of these assessments with clinical features, aiming to provide prediction of therapeutic effectiveness. Furthermore, because CF is a progressive disease, assessment of biomarkers in routine care is fundamental in monitoring treatment effectiveness and disease severity. In the first part of this review, we aimed to focus on the utility of individual-derived in vitro models (such as bronchial/nasal epithelial cells and airway/intestinal organoids) to identify potential responders and expand personalized CF care. Thereafter, we discussed the usage of CF inflammatory biomarkers derived from blood, bronchoalveolar lavage fluid, and sputum to routinely monitor treatment effectiveness and disease progression. Finally, we summarized the progress in investigating extracellular vesicles as a robust and reliable source of biomarkers and the identification of microRNAs related to CFTR regulation and CF inflammation as novel biomarkers, which may provide valuable information for disease prognosis.

3.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986509

RESUMO

Cystic fibrosis (CF) is a potentially fatal monogenic disease that causes a progressive multisystemic pathology. Over the last decade, the introduction of CF transmembrane conductance regulator (CFTR) modulator drugs into clinical practice has profoundly modified the lives of many people with CF (PwCF) by targeting the fundamental cause of the disease. These drugs consist of the potentiator ivacaftor (VX-770) and the correctors lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445). In particular, the triple combination of CFTR modulators composed of elexacaftor, tezacaftor, and ivacaftor (ETI) represents a life-changing therapy for the majority of PwCF worldwide. A growing number of clinical studies have demonstrated the safety and efficacy of ETI therapy in both short- and long-term (up to two years of follow-up to date) and its ability to significantly reduce pulmonary and gastrointestinal manifestations, sweat chloride concentration, exocrine pancreatic dysfunction, and infertility/subfertility, among other disease signs and symptoms. Nevertheless, ETI therapy-related adverse effects have also been reported, and close monitoring by a multidisciplinary healthcare team remains vital. This review aims to address and discuss the major therapeutic benefits and adverse effects reported by the clinical use of ETI therapy for PwCF.

4.
J Pers Med ; 13(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36675763

RESUMO

The R334W (c.1000C>T, p.Arg334Trp) is a rare cystic fibrosis (CF)-causing mutation for which no causal therapy is currently approved. This mutation leads to a significant reduction of CF transmembrane conductance regulator (CFTR) channel conductance that still allows for residual function. Potentiators are small molecules that interact with CFTR protein at the plasma membrane to enhance CFTR-dependent chloride secretion, representing thus pharmacotherapies targeting the root cause of the disease. Here, we generated a new CF bronchial epithelial (CFBE) cell line to screen a collection of compounds and identify novel potentiators for R334W-CFTR. The active compounds were then validated by electrophysiological assays and their additive effects in combination with VX-770, genistein, or VX-445 were exploited in this cell line and further confirmed in intestinal organoids. Four compounds (LSO-24, LSO-25, LSO-38, and LSO-77) were active in the functional primary screen and their ability to enhance R334W-CFTR-dependent chloride secretion was confirmed using electrophysiological measurements. In silico ADME analyses demonstrated that these compounds follow Lipinski's rule of five and are thus suggested to be orally bioavailable. Dose−response relationships revealed nevertheless suboptimal efficacy and weak potency exerted by these compounds. VX-770 and genistein also displayed a small potentiation of R334W-CFTR function, while VX-445 demonstrated no potentiator activity for this mutation. In the R334W-expressing cell line, CFTR function was further enhanced by the combination of LSO-24, LSO-25, LSO-38, or LSO-77 with VX-770, but not with genistein. The efficacy of potentiator VX-770 combined with active LSO compounds was further confirmed in intestinal organoids (R334W/R334W genotype). Taken together, these molecules were demonstrated to potentiate R334W-CFTR function by a different mechanism than that of VX-770. They may provide a feasible starting point for the design of analogs with improved CFTR-potentiator activity.

5.
Eur J Pharmacol ; 938: 175396, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36410419

RESUMO

The most prevalent cystic fibrosis (CF)-causing mutation - F508del - impairs the folding of CFTR protein, resulting in its defective trafficking and premature degradation. Small molecules termed correctors may rescue F508del-CFTR and therefore constitute promising pharmacotherapies acting on the fundamental cause of the disease. Here, we screened a collection of triazole compounds to identify novel F508del-CFTR correctors. The functional primary screen identified four hit compounds (LSO-18, LSO-24, LSO-28, and LSO-39), which were further validated and demonstrated to rescue F508del-CFTR processing, plasma membrane trafficking, and function. To interrogate their mechanism of action (MoA), we examined their additivity to the clinically approved drugs VX-661 and VX-445, low temperature, and genetic revertants of F508del-CFTR. Rescue of F508del-CFTR processing and function by LSO-18, LSO-24, and LSO-28, but not by LSO-39, was additive to VX-661, whereas LSO-28 and LSO-39, but not LSO-18 nor LSO-24, were additive to VX-445. All compounds under investigation demonstrated additive rescue of F508del-CFTR processing and function to low temperature as well as to rescue by genetic revertants G550E and 4RK. Nevertheless, none of these compounds was able to rescue processing nor function of DD/AA-CFTR, and LSO-39 (similarly to VX-661) exhibited no additivity to genetic revertant R1070W. From these findings, we suggest that LSO-39 (like VX-661) has a putative binding site at the NBD1:ICL4 interface, LSO-18 and LSO-24 seem to share the MoA with VX-445, and LSO-28 appears to act by a different MoA. Altogether, these findings represent an encouraging starting point to further exploit this chemical series for the development of novel CFTR correctors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Benzodioxóis/farmacologia , Fibrose Cística/tratamento farmacológico , Mutação , Triazóis/farmacologia , Triazóis/uso terapêutico
6.
Cells ; 11(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35011698

RESUMO

Although some therapeutic progress has been achieved in developing small molecules that correct F508del-CFTR defects, the mechanism of action (MoA) of these compounds remain poorly elucidated. Here, we investigated the effects and MoA of MCG1516A, a newly developed F508del-CFTR corrector. MCG1516A effects on wild-type (WT) and F508del-CFTR were assessed by immunofluorescence microscopy, and biochemical and functional assays both in cell lines and in intestinal organoids. To shed light on the MoA of MCG1516A, we evaluated its additivity to the FDA-approved corrector VX-661, low temperature, genetic revertants of F508del-CFTR (G550E, R1070W, and 4RK), and the traffic-null variant DD/AA. Finally, we explored the ability of MCG1516A to rescue trafficking and function of other CF-causing mutations. We found that MCG1516A rescues F508del-CFTR with additive effects to VX-661. A similar behavior was observed for WT-CFTR. Under low temperature incubation, F508del-CFTR demonstrated an additivity in processing and function with VX-661, but not with MCG1516A. In contrast, both compounds promoted additional effects to low temperature to WT-CFTR. MCG1516A demonstrated additivity to genetic revertant R1070W, while VX-661 was additive to G550E and 4RK. Nevertheless, none of these compounds rescued DD/AA trafficking. Both MCG1516A and VX-661 rescued CFTR processing of L206W- and R334W-CFTR with greater effects when these compounds were combined. In summary, the absence of additivity of MCG1516A to genetic revertant G550E suggests a putative binding site for this compound on NBD1:NBD2 interface. Therefore, a combination of MCG1516A with compounds able to rescue DD/AA traffic, or mimicking the actions of revertant R1070W (e.g., VX-661), could enhance correction of F508del-CFTR defects.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Descoberta de Drogas/métodos , Humanos , Mutação , Dobramento de Proteína
7.
J Cyst Fibros ; 21(1): 181-187, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34103250

RESUMO

BACKGROUND: W1282X-CFTR variant (c.3846G>A) is the second most common nonsense cystic fibrosis (CF)-causing mutation in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. Even though remarkable breakthroughs have been done towards CF treatment with the approval of four CFTR protein modulators, none of these are approved for patients with nonsense mutations. CRISPR gene editing tools can be of great value to permanently correct the genetic defects caused by these mutations. METHODS: We compared the capacity of homology-directed repair (HDR) mediated by Cas9 or Cas12a to correct W1282X CFTR mutation in the CFF-16HBEge W1282X CFTR cell line (obtained from CFF), using Cas9/gRNA and Cas12a/gRNA ribonucleoproteins (RNPs) and single strand DNA (ssODN) oligonucleotide donors. RESULTS: Cas9 shows higher levels of correction than Cas12a as, by electroporating cells with Cas9 RNPs and ssODN donor, nearly 18% of precise editing was achieved compared to just 8% for Cas12a. Such levels of correction increase the abundance of CFTR mRNA and protein, and partially restore CFTR function in the pool of edited cells to 18% of WT CFTR function. Moreover, homozygous corrected clones produced levels of mRNA, protein, and function comparable to those of cells expressing WT CFTR. CONCLUSION: Altogether, this work demonstrates the potential of gene editing as a therapeutic strategy for CF directly correcting the root cause of the disease.


Assuntos
Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Endodesoxirribonucleases/genética , Edição de Genes/métodos , Linhagem Celular , Humanos , Mutação
8.
Eur J Med Genet ; 60(3): 172-177, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28027978

RESUMO

Mitochondrial DNA (mtDNA) mutations have been assigned as a major cause of genetic disease. When a novel sequence variation is found, it is necessary to evaluate its functional impact, usually requiring functional molecular studies. Given the fact that this approach is difficult to put in practice in a routine basis, it is possible to take advantage of the in silico tools available and predict protein/RNA structure changes and therefore pathogenicity. Here, we describe the characterization of five undescribed mtDNA variants, upon detection of 23 unclassified alterations at Laboratory of Biochemical Genetics, from 2004 to 2014. Those five sequence variations are located in protein-coding genes, in five patients with a diverse range of mitochondrial respiratory chain disease phenotypes including encephalopathy, optic neuropathy, developmental delay, deafness and epilepsy. According to the prediction established by in silico analysis using tools to predict structure and function changes (ClustalW2®, PolyPhen-2®, SIFT®, MutationAssessor®, PredictProtein®, Provean®, I-TASSER®, Haplogrep®), from the 23 variants analyzed, the five described are potentially pathogenic. This approach is inexpensive and compatible with a rapid first line response to clinical demanding, contributing to a more rationale genetic diagnosis concerning novel mutations and to clarify the mtDNA involvement in these pathologies.


Assuntos
Simulação por Computador , DNA Mitocondrial/genética , Transporte de Elétrons/genética , Síndrome de Kearns-Sayre/genética , Miopatias Mitocondriais/genética , Mutação/genética , Adolescente , Adulto , Sequência de Bases , Criança , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA