Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSystems ; : e0078624, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975759

RESUMO

The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious K. pneumoniae, little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of K. pneumoniae-colonized intensive care and hematology/oncology patients. Cases were K. pneumoniae-colonized patients infected by their colonizing strain (N = 83). Controls were K. pneumoniae-colonized patients who remained asymptomatic (N = 149). First, we characterized the gut community structure of K. pneumoniae-colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. K. pneumoniae relative abundance, a known risk factor for infection, had the greatest feature importance, but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype data enhanced the ability of machine learning models to discriminate cases and controls. Interestingly, inclusion of patient clinical variables failed to improve the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with K. pneumoniae-derived biomarkers improves our ability to classify infection in K. pneumoniae-colonized patients.IMPORTANCEColonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients who develop an infection versus those who do not. Additionally, we show that integrating gut microbiota data with bacterial factors improves the ability to classify infections. Surprisingly, patient clinical factors were not useful for classifying infections alone or when added to microbiota-based models. This indicates that the bacterial genotype and the microbial community in which it exists may determine the progression to infection. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.

2.
mBio ; 14(5): e0144823, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37681955

RESUMO

IMPORTANCE: Infections of the bloodstream are life-threatening and can result in sepsis. Gram-negative bacteria cause a significant portion of bloodstream infections, which is also referred to as bacteremia. The long-term goal of our work is to understand how such bacteria establish and maintain infection during bacteremia. We have previously identified the transcription factor ArcA, which promotes fermentation in bacteria, as a likely contributor to the growth and survival of bacteria in this environment. Here, we study ArcA in the Gram-negative species Citrobacter freundii, Klebsiella pneumoniae, and Serratia marcescens. Our findings aid in determining how these bacteria sense their environment, utilize nutrients, and generate energy while countering the host immune system. This information is critical for developing better models of infection to inform future therapeutic development.


Assuntos
Bacteriemia , Sepse , Humanos , Ferro , Bacteriemia/microbiologia , Bactérias Gram-Negativas , Klebsiella pneumoniae/genética
3.
medRxiv ; 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37131824

RESUMO

The primary risk factor for infection with members of the Klebsiella pneumoniae species complex is prior gut colonization, and infection is often caused by the colonizing strain. Despite the importance of the gut as a reservoir for infectious Klebsiella , little is known about the association between the gut microbiome and infection. To explore this relationship, we undertook a case-control study comparing the gut community structure of Klebsiella -colonized intensive care and hematology/oncology patients. Cases were Klebsiella -colonized patients infected by their colonizing strain (N = 83). Controls were Klebsiella -colonized patients that remained asymptomatic (N = 149). First, we characterized the gut community structure of Klebsiella -colonized patients agnostic to case status. Next, we determined that gut community data is useful for classifying cases and controls using machine learning models and that the gut community structure differed between cases and controls. Klebsiella relative abundance, a known risk factor for infection, had the greatest feature importance but other gut microbes were also informative. Finally, we show that integration of gut community structure with bacterial genotype or clinical variable data enhanced the ability of machine learning models to discriminate cases and controls. This study demonstrates that including gut community data with patient- and Klebsiella -derived biomarkers improves our ability to predict infection in Klebsiella -colonized patients. Importance: Colonization is generally the first step in pathogenesis for bacteria with pathogenic potential. This step provides a unique window for intervention since a given potential pathogen has yet to cause damage to its host. Moreover, intervention during the colonization stage may help alleviate the burden of therapy failure as antimicrobial resistance rises. Yet, to understand the therapeutic potential of interventions that target colonization, we must first understand the biology of colonization and if biomarkers at the colonization stage can be used to stratify infection risk. The bacterial genus Klebsiella includes many species with varying degrees of pathogenic potential. Members of the K. pneumoniae species complex have the highest pathogenic potential. Patients colonized in their gut by these bacteria are at higher risk of subsequent infection with their colonizing strain. However, we do not understand if other members of the gut microbiota can be used as a biomarker to predict infection risk. In this study, we show that the gut microbiota differs between colonized patients that develop an infection versus those that do not. Additionally, we show that integrating gut microbiota data with patient and bacterial factors improves the ability to predict infections. As we continue to explore colonization as an intervention point to prevent infections in individuals colonized by potential pathogens, we must develop effective means for predicting and stratifying infection risk.

4.
Infect Immun ; 90(7): e0022422, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35762751

RESUMO

Klebsiella pneumoniae is a leading cause of Gram-negative bacteremia, which is a major source of morbidity and mortality worldwide. Gram-negative bacteremia requires three major steps: primary site infection, dissemination to the blood, and bloodstream survival. Because K. pneumoniae is a leading cause of health care-associated pneumonia, the lung is a common primary infection site leading to secondary bacteremia. K. pneumoniae factors essential for lung fitness have been characterized, but those required for subsequent bloodstream infection are unclear. To identify K. pneumoniae genes associated with dissemination and bloodstream survival, we combined previously and newly analyzed insertion site sequencing (InSeq) data from a murine model of bacteremic pneumonia. This analysis revealed the gene gmhB as important for either dissemination from the lung or bloodstream survival. In Escherichia coli, GmhB is a partially redundant enzyme in the synthesis of ADP-heptose for the lipopolysaccharide (LPS) core. To characterize its function in K. pneumoniae, an isogenic knockout strain (ΔgmhB) and complemented mutant were generated. During pneumonia, GmhB did not contribute to lung fitness and did not alter normal immune responses. However, GmhB enhanced bloodstream survival in a manner independent of serum susceptibility, specifically conveying resistance to spleen-mediated killing. In a tail-vein injection of murine bacteremia, GmhB was also required by K. pneumoniae, E. coli, and Citrobacter freundii for optimal fitness in the spleen and liver. Together, this study identifies GmhB as a conserved Gram-negative bacteremia fitness factor that acts through LPS-mediated mechanisms to enhance fitness in blood-filtering organs.


Assuntos
Bacteriemia , Infecções por Klebsiella , Difosfato de Adenosina , Animais , Bacteriemia/genética , Escherichia coli/genética , Heptoses , Klebsiella pneumoniae/genética , Lipopolissacarídeos , Camundongos
5.
J Clin Microbiol ; 60(1): e0167521, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34669458

RESUMO

Quality control (QC) rules (Westgard rules) are applied to viral load testing to identify runs that should be reviewed or repeated, but this requires balancing the patient safety benefits of error detection with the cost and inefficiency of false rejection. In this study, we identified the total allowable errors (TEa) from the literature and utilized a commercially available software program (Unity Real Time; Bio-Rad Laboratories) to manage QC data, assess assay performance, and provide QC decision support for both FDA-approved/cleared (Abbott cytomegalovirus [CMV] and HIV viral load) as well as laboratory-developed (Epstein-Barr virus [EBV] viral load) assays. Unity Real Time was used to calculate means, standard deviations (SDs), and coefficient of variation (CV; in percent) of negative, low-positive, and high-positive control data from 73 to 83 days of testing. Sigma values were calculated to measure the test performance relative to a TEa of 0.5 log10. The sigma value of 5.06 for EBV predicts ∼230 erroneous results per million individual patient tests (0.02% frequency), whereas sigma values of >6 for CMV (11.32) and HIV (7.66) indicate <4 erroneous results per million individual patient tests. The Unity Real Time QC Design module utilized these sigma values to recommend QC rules and provided objective evidence for loosening the laboratory's existing QC rules for run acceptability, potentially reducing false rejection rates by 10-fold for the assay with the most variation (EBV viral load). This study provides a framework for laboratories, with Unity Real Time as a tool, to evaluate assay performance relative to clinical decision points and establish optimal rules for routine monitoring of molecular viral load assay performance.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por HIV , Citomegalovirus/genética , DNA Viral , Herpesvirus Humano 4/genética , Humanos , Controle de Qualidade , Carga Viral/métodos
6.
mSphere ; 6(3): e0013221, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34160237

RESUMO

Klebsiella commonly colonizes the intestinal tract of hospitalized patients and is a leading cause of health care-associated infections. Colonization is associated with subsequent infection, but the factors determining this progression are unclear. A cohort study was performed, in which intensive care and hematology/oncology patients with Klebsiella colonization based on rectal swab culture were enrolled and monitored for infection for 90 days after a positive swab. Electronic medical records were analyzed for patient factors associated with subsequent infection, and variables of potential significance in a bivariable analysis were used to build a final multivariable model. Concordance between colonizing and infecting isolates was assessed by wzi capsular gene sequencing. Among 2,087 hospitalizations from 1,978 colonized patients, 90 cases of infection (4.3%) were identified. The mean time to infection was 20.6 ± 24.69 (range, 0 to 91; median, 11.5) days. Of 86 typed cases, 68 unique wzi types were identified, and 69 cases (80.2%) were colonized with an isolate of the same type prior to infection. Based on multivariable modeling, overall comorbidities, depression, and low albumin levels at the time of rectal swab collection were independently associated with subsequent Klebsiella infection (i.e., cases). Despite the high diversity of colonizing strains of Klebsiella, there is high concordance with subsequent infecting isolates, and progression to infection is relatively quick. Readily accessible data from the medical record could be used by clinicians to identify colonized patients at an increased risk of subsequent Klebsiella infection. IMPORTANCE Klebsiella is a leading cause of health care-associated infections. Patients who are intestinally colonized with Klebsiella are at a significantly increased risk of subsequent infection, but only a subset of colonized patients progress to disease. Colonization offers a potential window of opportunity to intervene and prevent these infections, if the patients at greatest risk could be identified. To identify patient factors associated with infection in colonized patients, we studied 1,978 colonized patients. We found that patients with a higher burden of underlying disease in general, depression in particular, and low albumin levels in a blood test were more likely to develop infection. However, these variables did not completely predict infection, suggesting that other host and microbial factors may also be important. The clinical variables associated with infection are readily available in the medical record and could serve as the foundation for developing an integrated risk assessment of Klebsiella infection in hospitalized patients.


Assuntos
Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/etiologia , Klebsiella pneumoniae/patogenicidade , Reto/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Comorbidade , Depressão/complicações , Feminino , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/microbiologia , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Infecções por Klebsiella/sangue , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/fisiologia , Masculino , Pessoa de Meia-Idade , Fatores de Risco
7.
J Infect Dis ; 223(1): 23-27, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33089317

RESUMO

We describe a case of chronic coronavirus disease 2019 (COVID-19) in a patient with lymphoma and associated B-cell immunodeficiency. Viral cultures and sequence analysis demonstrate ongoing replication of infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for at least 119 days. The patient had 3 admissions related to COVID-19 over a 4-month period and was treated twice with remdesivir and convalescent plasma with resolution of symptoms. The patient's lack of seroconversion and prolonged course illustrate the importance of humoral immunity in resolving SARS-CoV-2 infection. This case highlights challenges in managing immunocompromised hosts, who may act as persistent shedders and sources of transmission.


Assuntos
COVID-19/virologia , SARS-CoV-2/fisiologia , Replicação Viral , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/uso terapêutico , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Hospitalização , Humanos , Imunidade Humoral , Hospedeiro Imunocomprometido , Linfoma de Célula do Manto/complicações , Masculino , Pessoa de Meia-Idade , Doenças da Imunodeficiência Primária/complicações , Soroconversão
8.
PLoS Pathog ; 15(8): e1008010, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31449551

RESUMO

Klebsiella pneumoniae (Kp), one of the most common causes of healthcare-associated infections, increases patient morbidity, mortality, and hospitalization costs. Kp must acquire nutrients from the host for successful infection; however, the host is able to prevent bacterial nutrient acquisition through multiple systems. This includes the innate immune protein lipocalin 2 (Lcn2), which prevents Kp iron acquisition. To identify novel Lcn2-dependent Kp factors that mediate evasion of nutritional immunity during lung infection, we undertook an InSeq study using a pool of >20,000 transposon mutants administered to Lcn2+/+ and Lcn2-/- mice. Comparing transposon mutant frequencies between mouse genotypes, we identified the Kp citrate synthase, GltA, as potentially interacting with Lcn2, and this novel finding was independently validated. Interestingly, in vitro studies suggest that this interaction is not direct. Given that GltA is involved in oxidative metabolism, we screened the ability of this mutant to use a variety of carbon and nitrogen sources. The results indicated that the gltA mutant has a distinct amino acid auxotrophy rendering it reliant upon glutamate family amino acids for growth. Deletion of Lcn2 from the host leads to increased amino acid levels in bronchioloalveolar lavage fluid, corresponding to increased fitness of the gltA mutant in vivo and ex vivo. Accordingly, addition of glutamate family amino acids to Lcn2+/+ bronchioloalveolar lavage fluid rescued growth of the gltA mutant. Using a variety of mouse models of infection, we show that GltA is an organ-specific fitness factor required for complete fitness in the spleen, liver, and gut, but dispensable in the bloodstream. Similar to bronchioloalveolar lavage fluid, addition of glutamate family amino acids to Lcn2+/+ organ lysates was sufficient to rescue the loss of gltA. Together, this study describes a critical role for GltA in Kp infection and provides unique insight into how metabolic flexibility impacts bacterial fitness during infection.


Assuntos
Citrato (si)-Sintase/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Lipocalina-2/metabolismo , Lipocalina-2/fisiologia , Animais , Citrato (si)-Sintase/genética , Modelos Animais de Doenças , Humanos , Infecções por Klebsiella/metabolismo , Klebsiella pneumoniae/enzimologia , Lipocalina-2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
mSphere ; 3(2)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669884

RESUMO

Klebsiella pneumoniae is rapidly acquiring resistance to all known antibiotics, including carbapenems. Multilocus sequence type ST258 (sequence type 258), carrying a gene encoding the K. pneumoniae carbapenemase (blaKPC) on a transmissible plasmid, is the most prevalent carbapenem-resistant Enterobacteriaceae (CRE) in the United States and has disseminated worldwide. Previously, whole-genome sequencing identified core genome single nucleotide variants that divide ST258 into two distinct clades, ST258a and ST258b. Furthermore, a subset of ST258b strains have a 347-base deletion within the enterobactin (Ent) exporter gene entS Despite the predicted inability of these strains to secrete the siderophore Ent, this clade is prevalent among clinical isolates, indicating that a full-length entS gene is not necessary for infection. To compare the transcriptional responses of ST258 subtypes to iron limitation, we performed transcriptome sequencing (RNA-Seq) in minimal medium alone or supplemented with iron or human serum and measured gene expression patterns. Iron limitation induced differential expression of distinct iron acquisition pathways when comparing ST258a and ST258b strains, including the upregulation of the hemin transport operon in entS partial deletion isolates. To measure how K. pneumoniae strains vary in iron chelation and siderophore production, we performed in vitro chrome azurol S (CAS) and Arnow assays as well as mass spectrometry. We determined that both ST258a and ST258b strains grow under iron-depleted conditions, can utilize hemin for growth, and secrete Ent, despite the partial entS deletion in a subset of ST258b strains. All carbapenem-resistant (CR) K. pneumoniae strains tested were susceptible to growth inhibition by the Ent-sequestering innate immune protein lipocalin 2.IMPORTANCE Carbapenem-resistant Enterobacteriaceae, including K. pneumoniae, are a major health care concern worldwide because they cause a wide range of infection and are resistant to all or nearly all antibiotics. To cause infection, these bacteria must acquire iron, and a major mechanism of acquiring iron is by secreting a molecule called enterobactin that strips iron from host proteins. However, a subset of carbapenem-resistant K. pneumoniae strains that lack a portion of the entS gene that is required for enterobactin secretion was recently discovered. To understand how these mutant strains obtain iron, we studied their transcriptional responses, bacterial growth, and enterobactin secretion under iron-limited conditions. We found that strains both with mutated and intact entS genes grow under iron-limiting conditions, secrete enterobactin, and utilize an alternate iron source, hemin, for growth. Our data indicate that carbapenem-resistant K. pneumoniae can use varied methods for iron uptake during infection.


Assuntos
Ferro/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Sideróforos/metabolismo , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana , Genoma Bacteriano , Hemina/metabolismo , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Tipagem de Sequências Multilocus , Transcriptoma
10.
Clin Case Rep ; 6(1): 49-51, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375836

RESUMO

Disseminated histoplasmosis and hemophagocytic lymphohistiocytosis show overlapping features, which require careful contextual interpretation. Histopathologic evaluation can potentially rapidly identify cases of possible histoplasmosis. A high index of clinical suspicion, particularly in endemic areas and in a setting of immunosuppression, is critical to appropriate diagnosis and treatment.

11.
Infect Immun ; 82(9): 3826-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24980968

RESUMO

Iron is essential for many cellular processes and is required by bacteria for replication. To acquire iron from the host, pathogenic Gram-negative bacteria secrete siderophores, including enterobactin (Ent). However, Ent is bound by the host protein lipocalin 2 (Lcn2), preventing bacterial reuptake of aferric or ferric Ent. Furthermore, the combination of Ent and Lcn2 (Ent+Lcn2) leads to enhanced secretion of interleukin-8 (IL-8) compared to that induced by either stimulus alone. Modified or structurally distinct siderophores, including yersiniabactin (Ybt) and glycosylated Ent (GlyEnt, or salmochelin), deliver iron to bacteria despite the presence of Lcn2. We hypothesized that the robust immune response to Ent and Lcn2 requires iron chelation rather than the Ent+Lcn2 complex itself and also can be stimulated by Lcn2-evasive siderophores. To test this hypothesis, cultured respiratory epithelial cells were stimulated with combinations of purified siderophores and Lcn2 and analyzed by gene expression microarrays, quantitative PCR, and cytokine immunoassays. Ent caused HIF-1α protein stabilization, induced the expression of genes regulated by hypoxia-inducible factor 1α (HIF-1α), and repressed genes involved in cell cycle and DNA replication, whereas Lcn2 induced expression of proinflammatory cytokines. Iron chelation by excess Ent or Ybt significantly increased Lcn2-induced secretion of IL-8, IL-6, and CCL20. Stabilization of HIF-1α was sufficient to enhance Lcn2-induced IL-6 secretion. These data indicate that respiratory epithelial cells can respond to bacterial siderophores that evade or overwhelm Lcn2 binding by increasing proinflammatory cytokine production.


Assuntos
Proteínas de Fase Aguda/metabolismo , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Lipocalinas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sideróforos/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Quimiocina CCL20/metabolismo , Replicação do DNA/fisiologia , Enterobactina/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipocalina-2
12.
mBio ; 3(6)2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23169997

RESUMO

UNLABELLED: Pathogenic bacteria require iron for replication within their host. Klebsiella pneumoniae and other Gram-negative pathogens produce the prototypical siderophore enterobactin (Ent) to scavenge iron in vivo. In response, mucosal surfaces secrete lipocalin 2 (Lcn2), an innate immune protein that binds Ent to disrupt bacterial iron acquisition and promote acute inflammation during colonization. A subset of K. pneumoniae isolates attempt to evade Lcn2 by producing glycosylated Ent (Gly-Ent, salmochelin) or the alternative siderophore yersiniabactin (Ybt). However, these siderophores are not functionally equivalent and differ in their abilities to promote growth in the upper respiratory tract, lungs, and serum. To understand how Lcn2 exploits functional differences between siderophores, isogenic mutants of an Ent(+) Gly-Ent(+) Ybt(+) K. pneumoniae strain were inoculated into Lcn2(+/+) and Lcn2(-/-) mice, and the pattern of pneumonia was examined. Lcn2 effectively protected against the iroA ybtS mutant (Ent(+) Gly-Ent(-) Ybt(-)). Lcn2(+/+) mice had small foci of pneumonia, whereas Lcn2(-/-) mice had many bacteria in the perivascular space. The entB mutant (Ent(-) Ybt(+) Gly-Ent(-)) caused moderate bronchopneumonia but did not invade the transferrin-containing perivascular space. Accordingly, transferrin blocked Ybt-dependent growth in vitro. The wild type and the iroA mutant, which both produce Ent and Ybt, had a mixed phenotype, causing a moderate bronchopneumonia in Lcn2(+/+) mice and perivascular overgrowth in Lcn2(-/-) mice. Together, these data indicate that Lcn2, in combination with transferrin, confines K. pneumoniae to the airways and prevents invasion into tissue containing the pulmonary vasculature. IMPORTANCE: Gram-negative bacteria are a common cause of severe hospital-acquired infections. To cause disease, they must obtain iron and secrete the small molecule enterobactin to do so. Animal models of pneumonia using Klebsiella pneumoniae indicate that enterobactin promotes severe disease. Accordingly, the host defense protein lipocalin 2 exploits this common target by binding enterobactin and disrupting its function. However, pathogenic bacteria often make additional siderophores that lipocalin 2 cannot bind, such as yersiniabactin, which could make this host defense ineffective. This work compares the pattern and severity of pneumonia caused by K. pneumoniae based on which siderophores it produces. The results indicate that enterobactin promotes growth around blood vessels that are rich in the iron-binding protein transferrin, but yersiniabactin does not. Together, transferrin and lipocalin 2 protect this space against all types of K. pneumoniae tested. Therefore, the ability to acquire iron determines where bacteria can grow in the lung.


Assuntos
Proteínas de Fase Aguda/metabolismo , Enterobactina/metabolismo , Interações Hospedeiro-Patógeno , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/patogenicidade , Lipocalinas/metabolismo , Proteínas Oncogênicas/metabolismo , Pneumonia Bacteriana/patologia , Transferrina/metabolismo , Proteínas de Fase Aguda/deficiência , Animais , Enterobactina/antagonistas & inibidores , Enterobactina/genética , Lipocalina-2 , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/deficiência , Fenóis/antagonistas & inibidores , Fenóis/metabolismo , Ligação Proteica , Tiazóis/antagonistas & inibidores , Tiazóis/metabolismo , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Infect Immun ; 79(8): 3309-16, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21576334

RESUMO

Klebsiella pneumoniae is a pathogen of increasing concern because of multidrug resistance, especially due to K. pneumoniae carbapenemases (KPCs). K. pneumoniae must acquire iron to replicate, and it utilizes iron-scavenging siderophores, such as enterobactin (Ent). The innate immune protein lipocalin 2 (Lcn2) is able to specifically bind Ent and disrupt iron acquisition. To determine whether K. pneumoniae must produce Lcn2-resistant siderophores to cause disease, we examined siderophore production by clinical isolates (n = 129) from respiratory, urine, blood, and stool samples and by defined siderophore mutants through genotyping and liquid chromatography-mass spectrometry. Three categories of K. pneumoniae isolates were identified: enterobactin positive (Ent(+)) (81%), enterobactin and yersiniabactin positive (Ent(+) Ybt(+)) (17%), and enterobactin and salmochelin (glycosylated Ent) positive (Ent(+) gly-Ent(+)) with or without Ybt (2%). Ent(+) Ybt(+) strains were significantly overrepresented among respiratory tract isolates (P = 0.0068) and ß-lactam-resistant isolates (P = 0.0019), including the epidemic KPC-producing clone multilocus sequence type 258 (ST258). In ex vivo growth assays, gly-Ent but not Ybt allowed evasion of Lcn2 in human serum, whereas siderophores were dispensable for growth in human urine. In a murine pneumonia model, an Ent(+) strain was an opportunistic pathogen that was completely inhibited by Lcn2 but caused severe, disseminated disease in Lcn2(-/-) mice. In contrast, an Ent(+) Ybt(+) strain was a frank respiratory pathogen, causing pneumonia despite Lcn2. However, Lcn2 retained partial protection against disseminated disease. In summary, Ybt is a virulence factor that is prevalent among KPC-producing K. pneumoniae isolates and promotes respiratory tract infections through evasion of Lcn2.


Assuntos
Proteínas de Fase Aguda/antagonistas & inibidores , Fatores Imunológicos/metabolismo , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/patogenicidade , Lipocalinas/antagonistas & inibidores , Fenóis/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Infecções Respiratórias/imunologia , Tiazóis/metabolismo , Fatores de Virulência/metabolismo , Proteínas de Fase Aguda/deficiência , Proteínas de Fase Aguda/imunologia , Animais , Sangue/microbiologia , DNA Bacteriano/genética , Modelos Animais de Doenças , Fezes/microbiologia , Humanos , Fatores Imunológicos/análise , Fatores Imunológicos/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Lipocalina-2 , Lipocalinas/imunologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/imunologia , Fenóis/análise , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/imunologia , Sistema Respiratório/microbiologia , Infecções Respiratórias/microbiologia , Tiazóis/análise , Urina/microbiologia , Virulência , Fatores de Virulência/análise , Fatores de Virulência/genética
14.
PLoS Pathog ; 5(10): e1000622, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19834550

RESUMO

Nasal colonization by both gram-positive and gram-negative pathogens induces expression of the innate immune protein lipocalin 2 (Lcn2). Lcn2 binds and sequesters the iron-scavenging siderophore enterobactin (Ent), preventing bacterial iron acquisition. In addition, Lcn2 bound to Ent induces release of IL-8 from cultured respiratory cells. As a countermeasure, pathogens of the Enterobacteriaceae family such as Klebsiella pneumoniae produce additional siderophores such as yersiniabactin (Ybt) and contain the iroA locus encoding an Ent glycosylase that prevents Lcn2 binding. Whereas the ability of Lcn2 to sequester iron is well described, the ability of Lcn2 to induce inflammation during infection is unknown. To study each potential effect of Lcn2 on colonization, we exploited K. pneumoniae mutants that are predicted to be susceptible to Lcn2-mediated iron sequestration (iroA ybtS mutant) or inflammation (iroA mutant), or to not interact with Lcn2 (entB mutant). During murine nasal colonization, the iroA ybtS double mutant was inhibited in an Lcn2-dependent manner, indicating that the iroA locus protects against Lcn2-mediated growth inhibition. Since the iroA single mutant was not inhibited, production of Ybt circumvents the iron sequestration effect of Lcn2 binding to Ent. However, colonization with the iroA mutant induced an increased influx of neutrophils compared to the entB mutant. This enhanced neutrophil response to Ent-producing K. pneumoniae was Lcn2-dependent. These findings suggest that Lcn2 has both pro-inflammatory and iron-sequestering effects along the respiratory mucosa in response to bacterial Ent. Therefore, Lcn2 may represent a novel mechanism of sensing microbial metabolism to modulate the host response appropriately.


Assuntos
Proteínas de Fase Aguda/fisiologia , Enterobactina/farmacologia , Inflamação/genética , Ferro/metabolismo , Lipocalinas/fisiologia , Proteínas Oncogênicas/fisiologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animais , Bactérias/química , Bactérias/imunologia , Proliferação de Células , Células Cultivadas , Enterobactina/química , Enterobactina/imunologia , Enterobactina/metabolismo , Humanos , Imunidade nas Mucosas/genética , Inflamação/induzido quimicamente , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/fisiologia , Lipocalina-2 , Lipocalinas/genética , Lipocalinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Mucosa Respiratória/imunologia
15.
Proc Natl Acad Sci U S A ; 102(28): 9924-9, 2005 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-15998735

RESUMO

Differentiation in response to environmental cues is integral to the success of many intracellular pathogens. By characterizing a Legionella pneumophila mutant defective for differentiation in broth and replication in macrophages, we identified a subfamily of major facilitator superfamily transporters, here named Pht (phagosomal transporter), that also is conserved in two other vacuolar pathogens, Coxiella burnetii and Francisella tularensis. Biolog phenotype microarray analysis indicated that PhtA transports threonine, an essential amino acid. Either excess threonine or threonine peptides bypass phtA function. In minimal medium, phtA mutants do not replicate; in rich broth, the bacteria prematurely differentiate to the transmissive phase, as judged by the kinetics of flaA-gfp expression, heat resistance, and sodium sensitivity. PhtA is dispensable for transmissive L. pneumophila to establish and persist within a replication vacuole but is essential for their differentiation to the replicative phase, based on phenotypic and RT-PCR analysis. Accordingly, we propose that the Pht transporter family equips transmissive L. pneumophila, C. burnetii, and F. tularensis to assess their phagosomal nutrient supply before committing to reenter the cell cycle.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Legionella pneumophila/metabolismo , Legionella pneumophila/fisiologia , Macrófagos/metabolismo , Fagossomos/metabolismo , Fenótipo , Coxiella burnetii/metabolismo , Primers do DNA , Francisella tularensis/metabolismo , Teste de Complementação Genética , Análise em Microsséries , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Treonina/metabolismo
16.
Infect Immun ; 72(6): 3284-93, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15155631

RESUMO

Legionella pneumophila colonizes freshwater amoebae and can also replicate within alveolar macrophages. When their nutrient supply is exhausted, replicating bacteria become cytotoxic, motile, and infectious, which is thought to promote transmission to a new amoeba. The differentiation of L. pneumophila is coordinated by the sigma factors RpoS and FliA and the two-component regulator LetA/LetS and is enhanced by the letE locus. Here we demonstrate that letE promotes motility by increasing expression of the flagellin gene flaA but has little impact on the transcription of fliA, the flagellar sigma factor gene. In addition to promoting motility, letE induces the characteristic shape, pigment, and heat resistance of stationary-phase L. pneumophila. To gain insight into how letE promotes the expression of the transmission phenotype, we designed molecular genetic experiments to discriminate between the following three models: letE mutations are polar on milX; letE encodes a small novel protein; or, by analogy to csrB, letE encodes a regulatory RNA that sequesters CsrA to relieve repression. We report that letE encodes an activator protein, as it does not complement an Escherichia coli csrB mutant, it directs the synthesis of an approximately 12-kDa polypeptide, and a letE nonsense mutation eliminates function. A monocistronic letE RNA is abundant during the exponential phase, and its decay during the stationary phase requires RpoS and LetA/LetS. We also discuss how the LetE protein may interact with LetA/LetS and CsrA to enhance L. pneumophila differentiation to a transmissible form.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Legionella pneumophila/fisiologia , Doença dos Legionários/transmissão , Animais , Proteínas de Bactérias/genética , Temperatura Alta , Humanos , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Camundongos , Movimento , Fenótipo , Fator sigma/genética , Fator sigma/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA