Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 95(7): 2497-2505, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031697

RESUMO

Cannabis use is associated with known cardiovascular side effects such as cardiac arrhythmias or even sudden cardiac death. The mechanisms behind these adverse effects are unknown. The aim of the present work was to study the cellular cardiac electrophysiological effects of cannabidiol (CBD) on action potentials and several transmembrane potassium currents, such as the rapid (IKr) and slow (IKs) delayed rectifier, the transient outward (Ito) and inward rectifier (IK1) potassium currents in rabbit and dog cardiac preparations. CBD increased action potential duration (APD) significantly in both rabbit (from 211.7 ± 11.2. to 224.6 ± 11.4 ms, n = 8) and dog (from 215.2 ± 9.0 to 231.7 ± 4.7 ms, n = 6) ventricular papillary muscle at 5 µM concentration. CBD decreased IKr, IKs and Ito (only in dog) significantly with corresponding estimated EC50 values of 4.9, 3.1 and 5 µM, respectively, without changing IK1. Although the EC50 value of CBD was found to be higher than literary Cmax values after CBD smoking and oral intake, our results raise the possibility that potassium channel inhibition by lengthening cardiac repolarization might have a role in the possible proarrhythmic side effects of cannabinoids in situations where CBD metabolism and/or the repolarization reserve is impaired.


Assuntos
Canabidiol , Potássio , Potenciais de Ação , Animais , Canabidiol/toxicidade , Cães , Ventrículos do Coração , Músculos Papilares/metabolismo , Potássio/metabolismo , Coelhos
2.
J Mol Cell Cardiol ; 155: 10-20, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33631188

RESUMO

AIM: To obtain a quantitative expression profile of the main genes involved in the cAMP-signaling cascade in human control atria and in different cardiac pathologies. METHODS AND RESULTS: Expression of 48 target genes playing a relevant role in the cAMP-signaling cascade was assessed by RT-qPCR. 113 samples were obtained from right atrial appendages (RAA) of patients in sinus rhythm (SR) with or without atrium dilation, paroxysmal atrial fibrillation (AF), persistent AF or heart failure (HF); and left atrial appendages (LAA) from patients in SR or with AF. Our results show that right and left atrial appendages in donor hearts or from SR patients have similar expression values except for AC7 and PDE2A. Despite the enormous chamber-dependent variability in the gene-expression changes between pathologies, several distinguishable patterns could be identified. PDE8A, PI3Kγ and EPAC2 were upregulated in AF. Different phosphodiesterase (PDE) families showed specific pathology-dependent changes. CONCLUSION: By comparing mRNA-expression patterns of the cAMP-signaling cascade related genes in right and left atrial appendages of human hearts and across different pathologies, we show that 1) gene expression is not significantly affected by cardioplegic solution content, 2) it is appropriate to use SR atrial samples as controls, and 3) many genes in the cAMP-signaling cascade are affected in AF and HF but only few of them appear to be chamber (right or left) specific. TOPIC: Genetic changes in human diseased atria. TRANSLATIONAL PERSPECTIVE: The cyclic AMP signaling pathway is important for atrial function. However, expression patterns of the genes involved in the atria of healthy and diseased hearts are still unclear. We give here a general overview of how different pathologies affect the expression of key genes in the cAMP signaling pathway in human right and left atria appendages. Our study may help identifying new genes of interest as potential therapeutic targets or clinical biomarkers for these pathologies and could serve as a guide in future gene therapy studies.


Assuntos
AMP Cíclico/metabolismo , Variação Genética , Átrios do Coração/metabolismo , Sistemas do Segundo Mensageiro/genética , Idoso , Alelos , Apêndice Atrial/metabolismo , Fibrilação Atrial/complicações , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/genética , Fibrilação Atrial/fisiopatologia , Biomarcadores , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma , Proteômica/métodos
3.
Br J Pharmacol ; 177(16): 3744-3759, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32436214

RESUMO

BACKGROUND AND PURPOSE: Reliable prediction of pro-arrhythmic side effects of novel drug candidates is still a major challenge. Although drug-induced pro-arrhythmia occurs primarily in patients with pre-existing repolarisation disturbances, healthy animals are employed for pro-arrhythmia testing. To improve current safety screening, transgenic long QT (LQTS) rabbit models with impaired repolarisation reserve were generated by overexpressing loss-of-function mutations of human HERG (HERG-G628S, loss of IKr ; LQT2), KCNE1 (KCNE1-G52R, decreased IKs ; LQT5), or both transgenes (LQT2-5) in the heart. EXPERIMENTAL APPROACH: Effects of K+ channel blockers on cardiac repolarisation and arrhythmia susceptibility were assessed in healthy wild-type (WT) and LQTS rabbits using in vivo ECG and ex vivo monophasic action potential and ECG recordings in Langendorff-perfused hearts. KEY RESULTS: LQTS models reflect patients with clinically "silent" (LQT5) or "manifest" (LQT2 and LQT2-5) impairment in cardiac repolarisation reserve: they were more sensitive in detecting IKr -blocking (LQT5) or IK1 /IKs -blocking (LQT2 and LQT2-5) properties of drugs compared to healthy WT animals. Impaired QT-shortening capacity at fast heart rates was observed due to disturbed IKs function in LQT5 and LQT2-5. Importantly, LQTS models exhibited higher incidence, longer duration, and more malignant types of ex vivo arrhythmias than WT. CONCLUSION AND IMPLICATIONS: LQTS models represent patients with reduced repolarisation reserve due to different pathomechanisms. As they demonstrate increased sensitivity to different specific ion channel blockers (IKr blockade in LQT5 and IK1 and IKs blockade in LQT2 and LQT2-5), their combined use could provide more reliable and more thorough prediction of (multichannel-based) pro-arrhythmic potential of novel drug candidates.


Assuntos
Síndrome do QT Longo , Preparações Farmacêuticas , Potenciais de Ação , Animais , Animais Geneticamente Modificados , Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/genética , Ventrículos do Coração , Humanos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/genética , Coelhos
4.
PLoS One ; 14(5): e0216987, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31091274

RESUMO

Chronic pressure overload due to aortic valve stenosis leads to pathological cardiac hypertrophy and heart failure. Hypertrophy is accompanied by an increase in myocyte surface area, which requires a proportional increase in the number of cell-cell and cell-matrix contacts to withstand enhanced workload. In a proteomic analysis we identified nerve injury-induced protein 1 (Ninjurin1), a 16kDa transmembrane cell-surface protein involved in cell adhesion and nerve repair, to be increased in hypertrophic hearts from patients with aortic stenosis. We hypothesised that Ninjurin1 is involved in myocyte hypertrophy. We analyzed cardiac biopsies from aortic-stenosis patients and control patients undergoing elective heart surgery. We studied cardiac hypertrophy in mice after transverse aortic constriction and angiotensin II infusions, and performed mechanistic analyses in cultured myocytes. We assessed the physiological role of ninjurin1 in zebrafish during heart and skeletal muscle development. Ninjurin1 was increased in hearts of aortic stenosis patients, compared to controls, as well as in hearts from mice with cardiac hypertrophy. Besides the 16kDa Ninjurin1 (Ninjurin1-16) we detected a 24kDa variant of Ninjurin1 (Ninjurin1-24), which was predominantly expressed during myocyte hypertrophy. We disclosed that the higher molecular weight of Ninjurin1-24 was caused by N-glycosylation. Ninjurin1-16 was contained in the cytoplasm of myocytes where it colocalized with stress-fibers. In contrast, Ninjurin1-24 was localized at myocyte membranes. Gain and loss-of-function experiments showed that Ninjurin1-24 plays a role in myocyte hypertrophy and myogenic differentiation in vitro. Reduced levels of ninjurin1 impaired cardiac and skeletal muscle development in zebrafish. We conclude that Ninjurin1 contributes to myocyte growth and differentiation, and that these effects are mainly mediated by N-glycosylated Ninjurin1-24.


Assuntos
Estenose da Valva Aórtica/genética , Cardiomegalia/genética , Moléculas de Adesão Celular Neuronais/genética , Músculo Estriado/crescimento & desenvolvimento , Fatores de Crescimento Neural/genética , Animais , Estenose da Valva Aórtica/patologia , Cardiomegalia/patologia , Diferenciação Celular/genética , Modelos Animais de Doenças , Feminino , Humanos , Mutação com Perda de Função/genética , Masculino , Camundongos , Desenvolvimento Muscular/genética , Músculo Estriado/metabolismo , Músculo Estriado/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais/genética , Peixe-Zebra
5.
Eur Heart J ; 40(22): 1771-1777, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29982507

RESUMO

Unexpected cardiac adverse effects are the leading causes of discontinuation of clinical trials and withdrawal of drugs from the market. Since the original observations in the mid-90s, it has been well established that cardiovascular risk factors and comorbidities (such as ageing, hyperlipidaemia, and diabetes) and their medications (e.g. nitrate tolerance, adenosine triphosphate-dependent potassium inhibitor antidiabetic drugs, statins, etc.) may interfere with cardiac ischaemic tolerance and endogenous cardioprotective signalling pathways. Indeed drugs may exert unwanted effects on the diseased and treated heart that is hidden in the healthy myocardium. Hidden cardiotoxic effects may be due to (i) drug-induced enhancement of deleterious signalling due to ischaemia/reperfusion injury and/or the presence of risk factors and/or (ii) inhibition of cardioprotective survival signalling pathways, both of which may lead to ischaemia-related cell death and/or pro-arrhythmic effects. This led to a novel concept of 'hidden cardiotoxicity', defined as cardiotoxity of a drug that manifests only in the diseased heart with e.g. ischaemia/reperfusion injury and/or in the presence of its major comorbidities. Little is known on the mechanism of hidden cardiotoxocity, moreover, hidden cardiotoxicity cannot be revealed by the routinely used non-clinical cardiac safety testing methods on healthy animals or tissues. Therefore, here, we emphasize the need for development of novel cardiac safety testing platform involving combined experimental models of cardiac diseases (especially myocardial ischaemia/reperfusion and ischaemic conditioning) in the presence and absence of major cardiovascular comorbidities and/or cotreatments.


Assuntos
Cardiotoxicidade/prevenção & controle , Cardiotoxinas , Desenvolvimento de Medicamentos/normas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Segurança do Paciente , Animais , Comorbidade , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Humanos , Camundongos
6.
J Cell Sci ; 131(6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29507111

RESUMO

Reduced levels of the cardiac human (h)ERG ion channel protein and the corresponding repolarizing current IKr can cause arrhythmia and sudden cardiac death, but the underlying cellular mechanisms controlling hERG surface expression are not well understood. Here, we identified TRIOBP-1, an F-actin-binding protein previously associated with actin polymerization, as a putative hERG-interacting protein in a yeast-two hybrid screen of a cardiac library. We corroborated this interaction by performing Förster resonance energy transfer (FRET) in HEK293 cells and co-immunoprecipitation in HEK293 cells and native cardiac tissue. TRIOBP-1 overexpression reduced hERG surface expression and current density, whereas reducing TRIOBP-1 expression via shRNA knockdown resulted in increased hERG protein levels. Immunolabeling in rat cardiomyocytes showed that native TRIOBP-1 colocalized predominantly with myosin-binding protein C and secondarily with rat ERG. In human stem cell-derived cardiomyocytes, TRIOBP-1 overexpression caused intracellular co-sequestration of hERG signal, reduced native IKr and disrupted action potential repolarization. Ca2+ currents were also somewhat reduced and cell capacitance was increased. These findings establish that TRIOBP-1 interacts directly with hERG and can affect protein levels, IKr magnitude and cardiac membrane excitability.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Ligação Proteica , Transporte Proteico , Ratos , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
7.
Biol Sex Differ ; 8(1): 26, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28807015

RESUMO

BACKGROUND: Women have a higher risk of lethal arrhythmias than men in long QT syndrome type 2 (LQTS2), but the mechanisms remain uncertain due to the limited availability of healthy control human tissue. We have previously reported that in female rabbits, estrogen increases arrhythmia risk in drug-induced LQTS2 by upregulating L-type Ca2+ (ICa,L) and sodium-calcium exchange (INCX) currents at the base of the epicardium by a genomic mechanism. This study investigates if the effects of estrogen on rabbit ICa,L and INCX apply to human hearts. METHODS: Postmortem human left ventricular tissue samples were probed with selective antibodies for regional heterogeneities of ion channel protein expression and compared to rabbit myocardium. Functionally, ICa,L and INCX were measured from female and male cardiomyocytes derived from human induced pluripotent stem cells (iPS-CMs) with the voltage-clamp technique from control and estrogen-treated iPS-CMs. RESULTS: In women (n = 12), Cav1.2α (primary subunit of the L-type calcium channel protein 1) and NCX1 (sodium-calcium exchange protein) levels were higher at the base than apex of the epicardium (40 ± 14 and 81 ± 30%, respectively, P < 0.05), but not in men (n = 6) or postmenopausal women (n = 6). Similarly, in cardiomyocytes derived from female human iPS-CMs, estrogen (1 nM, 1-2 days) increased ICa,L (31%, P < 0.05) and INCX (7.5-fold, - 90 mV, P < 0.01) and their mRNA levels (P < 0.05). Moreover, in male human iPS-CMs, estrogen failed to alter ICa,L and INCX. CONCLUSIONS: The results show that estrogen upregulates cardiac ICa,L and INCX in women through genomic mechanisms that account for sex differences in Ca2+ handling and spatial heterogeneities of repolarization due to base-apex heterogeneities of Cav1.2α and NCX1. By analogy with rabbit studies, these effects account for human sex-difference in arrhythmia risk.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Estrogênios/metabolismo , Miócitos Cardíacos/metabolismo , Caracteres Sexuais , Trocador de Sódio e Cálcio/metabolismo , Regulação para Cima/fisiologia , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Estrogênios/administração & dosagem , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Pessoa de Meia-Idade , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , Coelhos , Adulto Jovem
8.
Eur Heart J ; 38(22): 1764-1774, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28057773

RESUMO

AIMS: Atrial fibrillation (AF) prevalence increases with advanced stages of left ventricular (LV) dysfunction. Remote proarrhythmic effects of ventricular dysfunction on atrial electrophysiology remain incompletely understood. We hypothesized that repolarizing K2P3.1 K+ channels, previously implicated in AF pathophysiology, may contribute to shaping the atrial action potential (AP), forming a specific electrical substrate with LV dysfunction that might represent a target for personalized antiarrhythmic therapy. METHODS AND RESULTS: A total of 175 patients exhibiting different stages of LV dysfunction were included. Ion channel expression was quantified by real-time polymerase chain reaction and Western blot. Membrane currents and APs were recorded from atrial cardiomyocytes using the patch-clamp technique. Severely reduced LV function was associated with decreased atrial K2P3.1 expression in sinus rhythm patients. In contrast, chronic (c)AF resulted in increased K2P3.1 levels, but paroxysmal (p)AF was not linked to significant K2P3.1 remodelling. LV dysfunction-related suppression of K2P3.1 currents prolonged atrial AP duration (APD) compared with patients with preserved LV function. In individuals with concomitant LV dysfunction and cAF, APD was determined by LV dysfunction-associated prolongation and by cAF-dependent shortening, respectively, consistent with changes in K2P3.1 abundance. K2P3.1 inhibition attenuated APD shortening in cAF patients irrespective of LV function, whereas in pAF subjects with severely reduced LV function, K2P3.1 blockade resulted in disproportionately high APD prolongation. CONCLUSION: LV dysfunction is associated with reduction of atrial K2P3.1 channel expression, while cAF leads to increased K2P3.1 abundance. Differential remodelling of K2P3.1 and APD provides a basis for patient-tailored antiarrhythmic strategies.


Assuntos
Potenciais de Ação/fisiologia , Antiarrítmicos/uso terapêutico , Fibrilação Atrial/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Idoso , Fibrilação Atrial/tratamento farmacológico , Índice de Massa Corporal , Doença do Sistema de Condução Cardíaco/etiologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Cardiomiopatia Dilatada/fisiopatologia , Regulação para Baixo/fisiologia , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Distribuição por Sexo , Fumar/efeitos adversos , Fumar/fisiopatologia , Regulação para Cima/fisiologia , Remodelação Ventricular/fisiologia
9.
Circulation ; 135(9): 881-897, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-27927712

RESUMO

BACKGROUND: Chronic heart failure (HF) is associated with altered signal transduction via ß-adrenoceptors and G proteins and with reduced cAMP formation. Nucleoside diphosphate kinases (NDPKs) are enriched at the plasma membrane of patients with end-stage HF, but the functional consequences of this are largely unknown, particularly for NDPK-C. Here, we investigated the potential role of NDPK-C in cardiac cAMP formation and contractility. METHODS: Real-time polymerase chain reaction, (far) Western blot, immunoprecipitation, and immunocytochemistry were used to study the expression, interaction with G proteins, and localization of NDPKs. cAMP levels were determined with immunoassays or fluorescent resonance energy transfer, and contractility was determined in cardiomyocytes (cell shortening) and in vivo (fractional shortening). RESULTS: NDPK-C was essential for the formation of an NDPK-B/G protein complex. Protein and mRNA levels of NDPK-C were upregulated in end-stage human HF, in rats after long-term isoprenaline stimulation through osmotic minipumps, and after incubation of rat neonatal cardiomyocytes with isoprenaline. Isoprenaline also promoted translocation of NDPK-C to the plasma membrane. Overexpression of NDPK-C in cardiomyocytes increased cAMP levels and sensitized cardiomyocytes to isoprenaline-induced augmentation of contractility, whereas NDPK-C knockdown decreased cAMP levels. In vivo, depletion of NDPK-C in zebrafish embryos caused cardiac edema and ventricular dysfunction. NDPK-B knockout mice had unaltered NDPK-C expression but showed contractile dysfunction and exacerbated cardiac remodeling during long-term isoprenaline stimulation. In human end-stage HF, the complex formation between NDPK-C and Gαi2 was increased whereas the NDPK-C/Gαs interaction was decreased, producing a switch that may contribute to an NDPK-C-dependent cAMP reduction in HF. CONCLUSIONS: Our findings identify NDPK-C as an essential requirement for both the interaction between NDPK isoforms and between NDPK isoforms and G proteins. NDPK-C is a novel critical regulator of ß-adrenoceptor/cAMP signaling and cardiac contractility. By switching from Gαs to Gαi2 activation, NDPK-C may contribute to lower cAMP levels and the related contractile dysfunction in HF.


Assuntos
AMP Cíclico/análise , Insuficiência Cardíaca/patologia , Nucleosídeo NM23 Difosfato Quinases/análise , Animais , Linhagem Celular , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nucleosídeo NM23 Difosfato Quinases/antagonistas & inibidores , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Peixe-Zebra/crescimento & desenvolvimento
10.
Can J Physiol Pharmacol ; 93(9): 811-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26325241

RESUMO

A substantial body of evidence indicates that pharmacological activation of mitochondrial ATP-sensitive potassium channels (mKATP) in the heart is protective in conditions associated with ischemia/reperfusion injury. Several mechanisms have been postulated to be responsible for cardioprotection, including the modulation of mitochondrial respiratory function. The aim of the present study was to characterize the dose-dependent effects of novel synthetic benzopyran analogues, derived from a BMS-191095, a selective mKATP opener, on mitochondrial respiration and reactive oxygen species (ROS) production in isolated rat heart mitochondria. Mitochondrial respiratory function was assessed by high-resolution respirometry, and H2O2 production was measured by the Amplex Red fluorescence assay. Four compounds, namely KL-1487, KL-1492, KL-1495, and KL-1507, applied in increasing concentrations (50, 75, 100, and 150 µmol/L, respectively) were investigated. When added in the last two concentrations, all compounds significantly increased State 2 and 4 respiratory rates, an effect that was not abolished by 5-hydroxydecanoate (5-HD, 100 µmol/L), the classic mKATP inhibitor. The highest concentration also elicited an important decrease of the oxidative phosphorylation in a K(+) independent manner. Both concentrations of 100 and 150 µmol/L for KL-1487, KL-1492, and KL-1495, and the concentration of 150 µmol/L for KL-1507, respectively, mitigated the mitochondrial H2O2 release. In isolated rat heart mitochondria, the novel benzopyran analogues act as protonophoric uncouplers of oxidative phosphorylation and decrease the generation of reactive oxygen species in a dose-dependent manner.


Assuntos
Benzopiranos/química , Benzopiranos/farmacologia , Respiração Celular/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Benzopiranos/antagonistas & inibidores , Ácidos Decanoicos/farmacologia , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/metabolismo , Hidroxiácidos/farmacologia , Canais KATP/agonistas , Canais KATP/antagonistas & inibidores , Masculino , Estrutura Molecular , Fosforilação Oxidativa/efeitos dos fármacos , Ratos
11.
Ann N Y Acad Sci ; 1348(1): 68-74, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26205342

RESUMO

Resveratrol is a bioactive polyphenol, found in grapes, red wine, and peanuts, and has recently garnered much media and scientific attention for its diverse beneficial health effects as a nutritional supplement or nutraceutical. Of particular interest are the well-documented cardioprotective effects of resveratrol that are mediated by diverse mechanisms, including its antioxidant and vascular effects. However, it is now becoming clear that resveratrol may also exhibit direct effects on cardiac function and rhythm through modulation of signaling pathways that regulate cardiac remodeling and ion channel activity that controls cardiac excitability. Resveratrol may therefore possess antiarrhythmic properties that contribute to the cardiovascular benefits of resveratrol. Atrial fibrillation (AF) is the most common cardiac arrhythmia, although current therapies are suboptimal. Our laboratory has been studying resveratrol's effects on cardiac ion channels and remodeling pathways, and we initiated a drug development program aimed at generating novel resveratrol derivatives with improved efficacy against AF when compared to currently available therapeutics. This review therefore focuses on the effects of resveratrol and new derivatives on a variety of cardiac ion channels and molecular pathways that contribute to the development and maintenance of atrial fibrillation.


Assuntos
Antiarrítmicos/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Estilbenos/uso terapêutico , Animais , Antiarrítmicos/farmacologia , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Humanos , Resveratrol , Estilbenos/farmacologia
12.
Curr Pharm Des ; 21(8): 1091-102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25354183

RESUMO

Ischemia and heart failure-related cardiac arrhythmias, both atrial (e.g., atrial fibrillation) and ventricular (e.g., malignant tachyarrhythmias) represent a leading cause of morbidity and mortality worldwide. Despite the progress made in the last decade in understanding their pathophysiological mechanisms there is still an unmet need for safer and more efficacious pharmacological treatment, especially when considering the drawbacks and complications of implantable devices. Cardiac ATP-sensitive potassium channels located in the sarcolemmal membrane (sarcKATP) and the inner mitochondrial membrane (mitoKATP) have emerged as crucial controllers of several key cellular functions. In the past three decades a tremendous amount of research led to their structural and functional characterization unveiling both a protective role in cardiac adaptive responses to metabolic stress and a seemingly paradoxical role in promoting as well as protecting against atrial and ventricular arrhythmias. On the other hand, several KATP inhibitors have emerged as potential ischemia selective antiarrhythmic drugs. In this respect, cardioselective, chamber specific and combined sarcKATP and mitoKATP modulators currently represent a promising field for drug development.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Canais KATP/efeitos dos fármacos , Animais , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/fisiopatologia , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Canais KATP/fisiologia , Sarcolema/efeitos dos fármacos , Sarcolema/fisiologia , Relação Estrutura-Atividade
13.
Eur J Heart Fail ; 16(11): 1160-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25287281

RESUMO

AIMS: Women with aortic stenosis develop a more concentric form of LV hypertrophy than men. However, the molecular factors underlying sex differences in LV remodelling are incompletely understood. We took an unbiased approach to identify sex-specific patterns in gene expression and pathway regulation, and confirmed the most prominent findings in human hearts. METHODS AND RESULTS: Echocardiography was performed in 104 patients (53.8% women) with aortic stenosis before aortic valve replacement. LV mass, LV end-diastolic diameter, and relative wall thickness were included in a factor analysis to generate an index classifying LV remodelling as adaptive or maladaptive. Maladaptive remodelling was present in 64.6% of male and in 32.7% of female patients (P < 0.01). Genome-wide expression profiling of LV samples was performed in a representative subgroup of 19 patients (52.6% women) compared with samples from healthy controls (n = 18). Transcriptome characterization revealed that fibrosis-related genes/pathways were induced in male overloaded ventricles, while extracellular matrix-related and inflammatory genes/pathways were repressed in female overloaded ventricles (adjusted P < 0.05). We confirmed gene regulation by quantitative real-time reverse transcription-polymerase chain reaction and immunoblotting analysis, and we further demonstrate the relevance of our findings by histological documentation of higher fibrosis in men than in women. CONCLUSION: We conclude that in pressure overload distinct molecular processes are regulated between men and women. Maladaptive LV remodelling occurs more frequently in men and is associated with greater activation of profibrotic and inflammatory markers. Collectively, sex-specific regulation of these processes may contribute to sex differences in the progression to heart failure.


Assuntos
Estenose da Valva Aórtica/patologia , Hipertrofia Ventricular Esquerda/patologia , Remodelação Ventricular , Idoso , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/genética , Biópsia , Ecocardiografia , Feminino , Fibrose/diagnóstico por imagem , Fibrose/genética , Fibrose/patologia , Perfilação da Expressão Gênica , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/genética , Immunoblotting , Inflamação/diagnóstico por imagem , Inflamação/genética , Inflamação/patologia , Masculino , RNA/análise , Reação em Cadeia da Polimerase em Tempo Real , Fatores Sexuais , Análise Serial de Tecidos , Transcriptoma/genética , Remodelação Ventricular/genética
14.
Br J Pharmacol ; 171(1): 92-106, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102184

RESUMO

BACKGROUND AND PURPOSE: Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk for stroke, heart failure and cardiovascular-related mortality. Candidate targets for anti-AF drugs include a potassium channel K(v)1.5, and the ionic currents I(KACh) and late I(Na), along with increased oxidative stress and activation of NFAT-mediated gene transcription. As pharmacological management of AF is currently suboptimal, we have designed and characterized a multifunctional small molecule, compound 1 (C1), to target these ion channels and pathways. EXPERIMENTAL APPROACH: We made whole-cell patch-clamp recordings of recombinant ion channels, human atrial I(Kur), rat atrial I(KACh), cellular recordings of contractility and calcium transient measurements in tsA201 cells, human atrial samples and rat myocytes. We also used a model of inducible AF in dogs. KEY RESULTS: C1 inhibited human peak and late K(v)1.5 currents, frequency-dependently, with IC50 of 0.36 and 0.11 µmol·L(-1) respectively. C1 inhibited I(KACh)(IC50 of 1.9 µmol·L(-1)) and the Na(v)1.5 sodium channel current (IC50s of 3 and 1 µmol·L(-1) for peak and late components respectively). C1 (1 µmol·L(-1)) significantly delayed contractile and calcium dysfunction in rat ventricular myocytes treated with 3 nmol·L(-1) sea anemone toxin (ATX-II). C1 weakly inhibited the hERG channel and maintained antioxidant and NFAT-inhibitory properties comparable to the parent molecule, resveratrol. In a model of inducible AF in conscious dogs, C1 (1 mg·kg(-1)) reduced the average and total AF duration. CONCLUSION AND IMPLICATIONS: C1 behaved as a promising multifunctional small molecule targeting a number of key pathways involved in AF.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Estilbenos/farmacologia , Potenciais de Ação , Adulto , Idoso , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Fibrilação Atrial/metabolismo , Fibrilação Atrial/fisiopatologia , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Acoplamento Excitação-Contração/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Células HEK293 , Humanos , Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Masculino , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Fatores de Transcrição NFATC/antagonistas & inibidores , Fatores de Transcrição NFATC/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Resveratrol , Bloqueadores dos Canais de Sódio/farmacologia , Transfecção
15.
J Am Coll Cardiol ; 63(6): 549-59, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24291282

RESUMO

OBJECTIVES: The aim of this study was to investigate the modulatory effect of the coxsackie and adenovirus receptor (CAR) on ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. BACKGROUND: A heritable component in the risk of ventricular fibrillation during myocardial infarction has been well established. A recent genome-wide association study of ventricular fibrillation during acute myocardial infarction led to the identification of a locus on chromosome 21q21 (rs2824292) in the vicinity of the CXADR gene. CXADR encodes the CAR, a cell adhesion molecule predominantly located at the intercalated disks of the cardiomyocyte. METHODS: The correlation between CAR transcript levels and rs2824292 genotype was investigated in human left ventricular samples. Electrophysiological studies and molecular analyses were performed using CAR haploinsufficient (CAR⁺/⁻) mice. RESULTS: In human left ventricular samples, the risk allele at the chr21q21 genome-wide association study locus was associated with lower CXADR messenger ribonucleic acid levels, suggesting that decreased cardiac levels of CAR predispose to ischemia-induced ventricular fibrillation. Hearts from CAR⁺/⁻ mice displayed slowing of ventricular conduction in addition to an earlier onset of ventricular arrhythmias during the early phase of acute myocardial ischemia after ligation of the left anterior descending artery. Expression and distribution of connexin 43 were unaffected, but CAR⁺/⁻ hearts displayed increased arrhythmia susceptibility on pharmacological electrical uncoupling. Patch-clamp analysis of isolated CAR⁺/⁻ myocytes showed reduced sodium current magnitude specifically at the intercalated disk. Moreover, CAR coprecipitated with NaV1.5 in vitro, suggesting that CAR affects sodium channel function through a physical interaction with NaV1.5. CONCLUSIONS: CAR is a novel modifier of ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. Genetic determinants of arrhythmia susceptibility (such as CAR) may constitute future targets for risk stratification of potentially lethal ventricular arrhythmias in patients with coronary artery disease.


Assuntos
Arritmias Cardíacas/etiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/fisiologia , Sistema de Condução Cardíaco/fisiopatologia , Isquemia Miocárdica/metabolismo , Função Ventricular , Animais , Carbenoxolona , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Isquemia Miocárdica/complicações , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo
16.
J Am Coll Cardiol ; 59(4): 410-7, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22261164

RESUMO

OBJECTIVES: This study investigated the effects of 17ß-estradiol (E2) on gene regulation in human cardiac tissues. We hypothesized that a candidate E2 effect is cardiomyocyte (CM)- and sex-specific, conserved between humans and mice, and that E2 impairs contractile function in male CMs only. BACKGROUND: Both men and women produce E2 locally from androgenic precursors. E2 regulates cardiovascular function, but specific mechanisms, protective or harmful, are not fully understood. METHODS: We performed genome-wide expression profiling of E2-treated cardiac tissues from men and women, and studied gene expression and function in CMs from hearts of male and female E2-treated mice. RESULTS: We found 36 E2-dependent genes regulated in a sex-specific manner. Of these, after E2 exposure, the myosin regulatory light chain interacting protein (MYLIP) gene was induced in tissues of men only. Focusing on Mylip and employing isolated mouse CMs, we confirmed our hypotheses that the E2 effect is CM- and sex-specific and conserved between humans and mice. The E2-treatment led to impaired contractile function in male CMs only, which was characterized by increased Mylip mRNA and protein levels, and decreased myosin regulatory light chain (Mrlc) protein. Our report is the first to our knowledge to show that cardiac Mrlc is an in vivo substrate for Mylip, leading to augmented Mrlc ubiquitination. Of relevance, we found that MYLIP expression levels rise with increasing age in hearts of men. CONCLUSIONS: E2 directly influences cardiac gene regulation, and E2 actions may be different between the sexes. Since E2 levels rise in older and/or obese men, pharmacological targeting of MYLIP in men with elevated E2 levels could possibly decrease their risk for the development or progression of cardiovascular disease.


Assuntos
Estradiol/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Caracteres Sexuais , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Envelhecimento/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Cadeias Leves de Miosina/metabolismo , Transcriptoma , Ubiquitinação
17.
Am J Physiol Heart Circ Physiol ; 298(5): H1577-87, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20207815

RESUMO

Protracted QT interval (QTI) adaptation to abrupt heart rate (HR) changes has been identified as a clinical arrhythmic risk marker. This study investigates the ionic mechanisms of QTI rate adaptation and its relationship to arrhythmic risk. Computer simulations and experimental recordings in human and canine ventricular tissue were used to investigate the ionic basis of QTI and action potential duration (APD) to abrupt changes in HR with a protocol commonly used in clinical studies. The time for 90% QTI adaptation is 3.5 min in simulations, in agreement with experimental and clinical data in humans. APD adaptation follows similar dynamics, being faster in mid-myocardial cells (2.5 min) than in endocardial and epicardial cells (3.5 min). Both QTI and APD adapt in two phases following an abrupt HR change: a fast initial phase with time constant < 30 s, mainly related to L-type calcium and slow-delayed rectifier potassium current, and a second slow phase of >2 min driven by intracellular sodium concentration ([Na(+)](i)) dynamics. Alterations in [Na(+)](i) dynamics due to Na(+)/K(+) pump current inhibition result in protracted rate adaptation and are associated with increased proarrhythmic risk, as indicated by action potential triangulation and faster L-type calcium current recovery from inactivation, leading to the formation of early afterdepolarizations. In conclusion, this study suggests that protracted QTI adaptation could be an indicator of altered [Na(+)](i) dynamics following Na(+)/K(+) pump inhibition as it occurs in patients with ischemia or heart failure. An increased risk of cardiac arrhythmias in patients with protracted rate adaptation may be due to an increased risk of early after-depolarization formation.


Assuntos
Adaptação Fisiológica/fisiologia , Arritmias Cardíacas/fisiopatologia , Frequência Cardíaca/fisiologia , Potenciais de Ação/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Simulação por Computador , Canais de Potássio de Retificação Tardia/fisiologia , Cães , Eletrocardiografia , Ventrículos do Coração , Humanos , Canais Iônicos/fisiologia , Cinética , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Valor Preditivo dos Testes , Medição de Risco , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
EMBO J ; 25(19): 4605-14, 2006 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-16977318

RESUMO

The sodium-calcium exchanger (NCX) is a critical mediator of calcium homeostasis. In the heart, NCX1 predominantly operates in forward mode to extrude Ca(2+); however, reverse-mode NCX1 activity during ischemia/reperfusion (IR) contributes to Ca(2+) loading and electrical and contractile dysfunction. IR injury has also been associated with altered fat metabolism and accumulation of long-chain acyl CoA esters. Here, we show that acyl CoAs are novel, endogenous activators of reverse-mode NCX1 activity, exhibiting chain length and saturation dependence, with longer chain saturated acyl moieties being the most effective NCX1 activators. These results implicate dietary fat composition as a plausible determinant of IR injury. We further show that acyl CoAs may interact directly with the XIP (exchanger inhibitory peptide) sequence, a known region of anionic lipid modulation, to dynamically regulate NCX1 activity and Ca(2+) homeostasis. Additionally, our findings have broad implications for the coupling of Ca(2+) homeostasis to fat metabolism in a variety of tissues.


Assuntos
Acil Coenzima A/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Ácidos Graxos/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Peptídeos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA