Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 59(5): 215-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38459769

RESUMO

Atrazine (ATZ) is the third most sold herbicide in Brazil, occupying the seventh position between most widely used pesticides. Due to its easy outflow, low reactivity and solubility, moderate adsorption to organic matter and clay, and long soil persistence, residual herbicide can be identified after long periods following application, and its usage has been prohibited in diverse countries. Amphibians are important bioindicators to assess impact of pesticide like atrazine, due to having a partial aquatic life cycle. This study had as objective to assess the response of bullfrog (Lithobates catesbeianus) tadpoles when exposed to this herbicide. Animals were exposed for a total of 168h to following concentrations: negative control, 40 µg/L, 200 µg/L, 2000 µg/L, 20000 µg/L of ATZ. Analysis of swimming activity was performed, and biochemical profile was assessed by analysis of blood and plasma glucose levels, urea, creatinine, cholesterol, HDL, triglycerides, glutamic pyruvic transaminase (GPT), alkaline phosphatase (AP), calcium, total proteins, phenol, peroxidase and polyphenol oxidase activity. Results exhibited malnutrition, anemia, likely muscle mass loss, and hepatic damage, indicating that ATZ can lead to an increase in energy to maintain homeostasis for animal survival.


Assuntos
Atrazina , Herbicidas , Praguicidas , Poluentes Químicos da Água , Animais , Herbicidas/metabolismo , Larva , Praguicidas/metabolismo , Rana catesbeiana/metabolismo , Poluentes Químicos da Água/metabolismo
2.
J Environ Sci Health B ; 58(3): 217-228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36861322

RESUMO

Due to their selective toxicity to insects, nicotinoid compounds have been widely used to control pests in crops and livestock around the world. However, despite the advantages presented, much has been discussed about their harmful effects on exposed organisms, either directly or indirectly, with regards to endocrine disruption. This study aimed to evaluate the lethal and sublethal effects of imidacloprid (IMD) and abamectin (ABA) formulations, separately and combined, on zebrafish (Danio rerio) embryos at different developmental stages. For this, Fish Embryo Toxicity (FET) tests were carried out, exposing two hours post-fertilization (hpf) zebrafish to 96 hours of treatments with five different concentrations of abamectin (0.5-11.7 mg L-1), imidacloprid (0.0001-1.0 mg L-1), and imidacloprid/abamectin mixtures (LC50/2 - LC50/1000). The results showed that IMD and ABA caused toxic effects in zebrafish embryos. Significant effects were observed regarding egg coagulation, pericardial edema, and lack of larvae hatching. However, unlike ABA, the IMD dose-response curve for mortality had a bell curve display, where medium doses caused more mortality than higher and lower doses. These data demonstrate the toxic influence of sublethal IMD and ABA concentrations on zebrafish, suggesting that these compounds should be listed for river and reservoir water-quality monitoring.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Peixe-Zebra , Embrião não Mamífero , Larva , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA