Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 269, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475767

RESUMO

BACKGROUND: Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS: To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS: Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS: Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Humanos , Cisplatino , Proteína Supressora de Tumor p53 , Fluoruracila , Bactérias
2.
Nat Med ; 28(3): 545-556, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35228752

RESUMO

Ample evidence indicates that the gut microbiome is a tumor-extrinsic factor associated with antitumor response to anti-programmed cell death protein-1 (PD-1) therapy, but inconsistencies exist between published microbial signatures associated with clinical outcomes. To resolve this, we evaluated a new melanoma cohort, along with four published datasets. Time-to-event analysis showed that baseline microbiota composition was optimally associated with clinical outcome at approximately 1 year after initiation of treatment. Meta-analysis and other bioinformatic analyses of the combined data show that bacteria associated with favorable response are confined within the Actinobacteria phylum and the Lachnospiraceae/Ruminococcaceae families of Firmicutes. Conversely, Gram-negative bacteria were associated with an inflammatory host intestinal gene signature, increased blood neutrophil-to-lymphocyte ratio, and unfavorable outcome. Two microbial signatures, enriched for Lachnospiraceae spp. and Streptococcaceae spp., were associated with favorable and unfavorable clinical response, respectively, and with distinct immune-related adverse effects. Despite between-cohort heterogeneity, optimized all-minus-one supervised learning algorithms trained on batch-corrected microbiome data consistently predicted outcomes to programmed cell death protein-1 therapy in all cohorts. Gut microbial communities (microbiotypes) with nonuniform geographical distribution were associated with favorable and unfavorable outcomes, contributing to discrepancies between cohorts. Our findings shed new light on the complex interaction between the gut microbiome and response to cancer immunotherapy, providing a roadmap for future studies.


Assuntos
Microbioma Gastrointestinal , Melanoma , Microbiota , Bactérias/genética , Microbioma Gastrointestinal/genética , Humanos , Imunoterapia/efeitos adversos , Melanoma/tratamento farmacológico
3.
Science ; 374(6575): 1632-1640, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941392

RESUMO

Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to anti­programmed cell death 1 (anti­PD-1)­based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γ­positive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/terapia , Probióticos , Animais , Estudos de Coortes , Ácidos Graxos Voláteis/análise , Transplante de Microbiota Fecal , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Imunoterapia , Masculino , Melanoma/imunologia , Melanoma/microbiologia , Melanoma Experimental/imunologia , Melanoma Experimental/microbiologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Intervalo Livre de Progressão , Linfócitos T
4.
Science ; 371(6529): 595-602, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542131

RESUMO

Anti-programmed cell death protein 1 (PD-1) therapy provides long-term clinical benefits to patients with advanced melanoma. The composition of the gut microbiota correlates with anti-PD-1 efficacy in preclinical models and cancer patients. To investigate whether resistance to anti-PD-1 can be overcome by changing the gut microbiota, this clinical trial evaluated the safety and efficacy of responder-derived fecal microbiota transplantation (FMT) together with anti-PD-1 in patients with PD-1-refractory melanoma. This combination was well tolerated, provided clinical benefit in 6 of 15 patients, and induced rapid and durable microbiota perturbation. Responders exhibited increased abundance of taxa that were previously shown to be associated with response to anti-PD-1, increased CD8+ T cell activation, and decreased frequency of interleukin-8-expressing myeloid cells. Responders had distinct proteomic and metabolomic signatures, and transkingdom network analyses confirmed that the gut microbiome regulated these changes. Collectively, our findings show that FMT and anti-PD-1 changed the gut microbiome and reprogrammed the tumor microenvironment to overcome resistance to anti-PD-1 in a subset of PD-1 advanced melanoma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Transplante de Microbiota Fecal , Melanoma/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Neoplasias Cutâneas/terapia , Linfócitos T CD8-Positivos/imunologia , Microbioma Gastrointestinal , Humanos , Interleucina-8/imunologia , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Células Mieloides/imunologia , Microambiente Tumoral/imunologia
5.
Methods Mol Biol ; 2055: 595-638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31502171

RESUMO

Humans are living ecosystems composed of human cells and microbes. The microbiome is the collection of microbes (microbiota) and their genes. Recent breakthroughs in the high-throughput sequencing technologies have made it possible for us to understand the composition of the human microbiome. Launched by the National Institutes of Health in USA, the human microbiome project indicated that our bodies harbor a wide array of microbes, specific to each body site with interpersonal and intrapersonal variabilities. Numerous studies have indicated that several factors influence the development of the microbiome including genetics, diet, use of antibiotics, and lifestyle, among others. The microbiome and its mediators are in a continuous cross talk with the host immune system; hence, any imbalance on one side is reflected on the other. Dysbiosis (microbiota imbalance) was shown in many diseases and pathological conditions such as inflammatory bowel disease, celiac disease, multiple sclerosis, rheumatoid arthritis, asthma, diabetes, and cancer. The microbial composition mirrors inflammation variations in certain disease conditions, within various stages of the same disease; hence, it has the potential to be used as a biomarker.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Metagenômica/métodos , Fatores Etários , Idoso , Bactérias/genética , Bactérias/isolamento & purificação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota , Pessoa de Meia-Idade , Análise de Sequência de DNA
6.
Cell ; 171(5): 1015-1028.e13, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29056339

RESUMO

Laboratory mice, while paramount for understanding basic biological phenomena, are limited in modeling complex diseases of humans and other free-living mammals. Because the microbiome is a major factor in mammalian physiology, we aimed to identify a naturally evolved reference microbiome to better recapitulate physiological phenomena relevant in the natural world outside the laboratory. Among 21 distinct mouse populations worldwide, we identified a closely related wild relative to standard laboratory mouse strains. Its bacterial gut microbiome differed significantly from its laboratory mouse counterpart and was transferred to and maintained in laboratory mice over several generations. Laboratory mice reconstituted with natural microbiota exhibited reduced inflammation and increased survival following influenza virus infection and improved resistance against mutagen/inflammation-induced colorectal tumorigenesis. By demonstrating the host fitness-promoting traits of natural microbiota, our findings should enable the discovery of protective mechanisms relevant in the natural world and improve the modeling of complex diseases of free-living mammals. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal , Camundongos/classificação , Camundongos/microbiologia , Animais , Animais de Laboratório , Animais Selvagens , Carcinogênese/imunologia , Resistência à Doença , Feminino , Masculino , Maryland , Camundongos/imunologia , Camundongos Endogâmicos C57BL , Peromyscus , Viroses/imunologia
8.
Annu Rev Immunol ; 35: 199-228, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28142322

RESUMO

Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.


Assuntos
Imunidade Inata , Imunoterapia/métodos , Mucosa Intestinal/imunologia , Microbiota/imunologia , Neoplasias/imunologia , Imunidade Adaptativa , Animais , Antineoplásicos/uso terapêutico , Carcinogênese , Humanos , Inflamação , Neoplasias/microbiologia , Neoplasias/terapia , Cicatrização
9.
PLoS Genet ; 12(12): e1006490, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973599

RESUMO

Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success.


Assuntos
Diatomáceas/metabolismo , Ferro/metabolismo , Fotoperíodo , Transcriptoma/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Cloroplastos/genética , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Expressão Gênica , Ferro/farmacologia , Redes e Vias Metabólicas/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos
10.
Nat Biotechnol ; 26(10): 1161-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18820685

RESUMO

Industrial penicillin production with the filamentous fungus Penicillium chrysogenum is based on an unprecedented effort in microbial strain improvement. To gain more insight into penicillin synthesis, we sequenced the 32.19 Mb genome of P. chrysogenum Wisconsin54-1255 and identified numerous genes responsible for key steps in penicillin production. DNA microarrays were used to compare the transcriptomes of the sequenced strain and a penicillinG high-producing strain, grown in the presence and absence of the side-chain precursor phenylacetic acid. Transcription of genes involved in biosynthesis of valine, cysteine and alpha-aminoadipic acid-precursors for penicillin biosynthesis-as well as of genes encoding microbody proteins, was increased in the high-producing strain. Some gene products were shown to be directly controlling beta-lactam output. Many key cellular transport processes involving penicillins and intermediates remain to be characterized at the molecular level. Genes predicted to encode transporters were strongly overrepresented among the genes transcriptionally upregulated under conditions that stimulate penicillinG production, illustrating potential for future genomics-driven metabolic engineering.


Assuntos
Mapeamento Cromossômico/métodos , Proteínas Fúngicas/genética , Genoma Fúngico/genética , Penicilina G/metabolismo , Penicillium chrysogenum/genética , Fatores de Transcrição/genética , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA