Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Biomed Pharmacother ; 178: 117246, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096617

RESUMO

Idiopathic pulmonary fibrosis is a progressive lung disease characterized by excessive extracellular matrix accumulation and myofibroblast proliferation with limited treatment options available. M2 macrophages are pivotal in pulmonary fibrosis, where they induce the epithelial-to-mesenchymal and fibroblast-to-myofibroblast transitions. In this study, we evaluated whether MEL-dKLA, a hybrid peptide that can eliminate M2 macrophages, could attenuate pulmonary fibrosis in a cell co-culture system and in a bleomycin-induced mouse model. Our findings demonstrated that the removal of M2 macrophages using MEL-dKLA stimulated reprogramming to an antifibrotic environment, which effectively suppressed epithelial-to-mesenchymal and fibroblast-to-myofibroblast transition responses in lung epithelial and fibroblast cells and reduced extracellular matrix accumulation both in vivo and in vitro. Moreover, MEL-dKLA exhibited antifibrotic efficacy without damaging tissue-resident macrophages in the bleomycin-induced mouse model. Collectively, our findings suggest that MEL-dKLA may be a new therapeutic option for the treatment of idiopathic pulmonary fibrosis.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Macrófagos , Animais , Humanos , Masculino , Camundongos , Técnicas de Cocultura , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Miofibroblastos/patologia , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/tratamento farmacológico , Células RAW 264.7
2.
Exp Mol Med ; 55(9): 1996-2004, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653036

RESUMO

Within the tumor microenvironment (TME), regulatory T cells (Tregs) play a key role in suppressing anticancer immune responses; therefore, various strategies targeting Tregs are becoming important for tumor therapy. To prevent the side effects of nonspecific Treg depletion, such as immunotherapy-related adverse events (irAEs), therapeutic strategies that specifically target Tregs in the TME are being investigated. Tumor-targeting drug conjugates are efficient drugs in which a cytotoxic payload is assembled into a carrier that binds Tregs via a linker. By allowing the drug to act selectively on target cells, this approach has the advantage of increasing the therapeutic effect and minimizing the side effects of immunotherapy. Antibody-drug conjugates, immunotoxins, peptide-drug conjugates, and small interfering RNA conjugates are being developed as Treg-targeting drug conjugates. In this review, we discuss key themes and recent advances in drug conjugates targeting Tregs in the TME, as well as future design strategies for successful use of drug conjugates for Treg targeting in immunotherapy.


Assuntos
Antineoplásicos Imunológicos , Neoplasias , Humanos , Linfócitos T Reguladores/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Imunoterapia , Microambiente Tumoral , Antineoplásicos Imunológicos/farmacologia
3.
Front Immunol ; 14: 1178776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122692

RESUMO

Background: Melanoma has the highest mortality rate among all the types of skin cancer. In melanoma, M2-like tumor-associated macrophages (TAMs) are associated with the invasiveness of tumor cells and a poor prognosis. Hence, the depletion or reduction of M2-TAMs is a therapeutic strategy for the inhibition of tumor progression. The aim of this study was to evaluate the therapeutic effects of M-DM1, which is a conjugation of melittin (M), as a carrier for M2-like TAMs, and mertansine (DM1), as a payload to induce apoptosis of TAMs, in a mouse model of melanoma. Methods: Melittin and DM1 were conjugated and examined for the characterization of M-DM1 by high-performance liquid chromatography and electrospray ionization mass spectrometry. Synthesized M-DM1 were examined for in vitro cytotoxic effects. For the in vivo study, we engrafted murine B16-F10 into right flank of C57BL/6 female mice and administered an array of treatments (PBS, M, DM1, or M-DM1 (20 nmol/kg)). Subsequently, the tumor growth and survival rates were analyzed, as well as examining the phenotypes of tumor-infiltrating leukocytes and expression profiles. Results: M-DM1 was found to specifically reduce M2-like TAMs in melanoma, which potentially leads to the suppression of tumor growth, migration, and invasion. In addition, we also found that M-DM1 improved the survival rates in a mouse model of melanoma compared to M or DM1 treatment alone. Flow cytometric analysis revealed that M-DM1 enhanced the infiltration of CD8+ cytotoxic T cells and natural killer cells (NK cells) in the tumor microenvironment. Conclusion: Taken together, our findings highlight that M-DM1 is a prospective agent with enhanced anti-tumor effects.


Assuntos
Melanoma , Meliteno , Feminino , Camundongos , Animais , Meliteno/farmacologia , Meliteno/metabolismo , Macrófagos Associados a Tumor/metabolismo , Estudos Prospectivos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Melanoma/patologia , Microambiente Tumoral
4.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555393

RESUMO

Triple-negative breast cancer (TNBC) is characterized by a high possibility of metastasis. M2-like tumor-associated macrophages (TAMs) are the main components of the tumor microenvironment (TME) and play a key role in TNBC metastasis. Therefore, TAMs may be a potential target for reducing TNBC metastasis. Melittin-dKLA, a peptide composed of fused melittin and pro-apoptotic peptide d(KLAKLAK)2 (dKLA), showed a potent therapeutic effect against cancers by depleting TAMs. However, melittin has a strong adverse hemolytic effect. Hence, we attempted to improve the therapeutic potential of melittin-dKLA by reducing toxicity and increasing stability. Nine truncated melittin fragments were synthesized and examined. Of the nine peptides, the melittin-dKLA8-26 showed the best binding properties to M2 macrophages and discriminated M0/M1/M2. All fragments, except melittin, lost their hemolytic effects. To increase the stability of the peptide, melittin-dKLA8-26 fragment was conjugated with PEGylation at the amino terminus and was named PEG-melittin-dKLA8-26. This final drug candidate was assessed in vivo in a murine TNBC model and showed superior effects on tumor growth, survival rates, and lung metastasis compared with the previously used melittin-dKLA. Taken together, our study showed that the novel PEG-melittin-dKLA8-26 possesses potential as a new drug for treating TNBC and TNBC-mediated metastasis by targeting TAMs.


Assuntos
Neoplasias de Mama Triplo Negativas , Macrófagos Associados a Tumor , Humanos , Animais , Camundongos , Macrófagos Associados a Tumor/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Meliteno/farmacologia , Meliteno/uso terapêutico , Peptídeos/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral
5.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35745645

RESUMO

Although oxaliplatin is a well-known anti-cancer agent used for the treatment of colorectal cancer, treated patients often experience acute cold and mechanical allodynia as side effects. Unfortunately, no optimal treatment has been developed yet. In this study, [6]-shogaol (10 mg/kg, i.p.), which is one of the major bioactive components of Zingiber officinale roscoe (Z. officinale), significantly alleviated allodynia induced by oxaliplatin (6 mg/kg, i.p.) injection. Cold and mechanical allodynia were assessed by acetone drop and von Frey filament tests, respectively. The analgesic effect of [6]-shogaol was blocked by the intrathecal injection of 5-HT1A, 5-HT3, and GABAB receptor antagonists, NAN-190 (1 µg), MDL-72222 (15 µg), and CGP 55845 (10 µg), respectively. Furthermore, oxaliplatin injection lowered the GABA concentration in the superficial laminae of the spinal dorsal horn, whereas [6]-shogaol injection significantly elevated it. The GAD (glutamic acid decarboxylase) 65 concentration also increased after [6]-shogaol administration. However, pre-treatment of NAN-190 completely inhibited the increased GABA induced by [6]-shogaol in the spinal dorsal horn, whereas MDL-72222 partially blocked the effect. Altogether, these results suggest that [6]-shogaol could attenuate oxaliplatin-induced cold and mechanical allodynia through 5-HT1A and 5-HT3 receptor antagonists located in the GABAergic neurons in the spinal dorsal horn in mice.

6.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628104

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating and common chronic lung disease that is pathologically characterized by the destruction of lung architecture and the accumulation of extracellular matrix in the lung. Previous studies have shown an association between lung surfactant protein (SP) and the pathogenesis of IPF, as demonstrated by mutations and the altered expression of SP in patients with IPF. However, the role of SP in the development of lung fibrosis is poorly understood. In this study, the role of surfactant protein A (SP-A) was explored in experimental lung fibrosis induced with a low or high dose of bleomycin (BLM) and CRISPR/Cas9-mediated genetic deletion of SP-A. Our results showed that lung SP-A deficiency in mice promoted the development of fibrotic damage and exacerbated inflammatory responses to the BLM challenge. In vitro experiments with murine lung epithelial LA-4 cells demonstrated that in response to transforming growth factor-ß1 (TGF-ß1), LA-4 cells had a decreased protein expression of SP-A. Furthermore, exogenous SP administration to LA-4 cells inhibited the TGF-ß1-induced upregulation of fibrotic markers. Overall, these findings suggest a novel antifibrotic mechanism of SP-A in the development of lung fibrosis, which indicates the therapeutic potential of the lung SP-A in preventing the development of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Proteína A Associada a Surfactante Pulmonar , Animais , Bleomicina/toxicidade , Pulmão/patologia , Camundongos , Proteína A Associada a Surfactante Pulmonar/deficiência , Proteína A Associada a Surfactante Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
7.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35328518

RESUMO

Melanoma is an immunogenic tumor and a serious type of skin cancer. Tumor-associated macrophages (TAMs) express an M2-like phenotype and are involved in all stages of melanomagenesis; it is hence a promising target for cancer immunotherapy. We herein investigated whether melittin-dKLA inhibits the growth of melanoma by inducing apoptosis of M2-like macrophages. For the in vitro study, a conditioned medium of macrophages was prepared from M0, M1, or M2-differentiated THP-1 cells with and without melittin-dKLA. The affinity of melittin for M2 macrophages was studied with FITC (fluorescein isothiocyanate)-conjugated melittin. For the in vivo study, murine melanoma cells were inoculated subcutaneously in the right flank of mice, melittin-dKLA was intraperitoneally injected at 200 nmol/kg every three days, and flow cytometry analysis of TAMs was performed. Since melittin binds preferentially to M2-like macrophages, melittin-dKLA induced more caspase 3 expression and cell death in M2 macrophages compared with M0 and M1 macrophages and melanoma cells. Melittin-dKLA significantly inhibited the proliferation and migration of M2 macrophages, resulting in a decrease in melanoma tumor growth in vivo. The CD206+ M2-like TAMs were reduced, while the CD86+ M1-like TAMs were not affected. Melittin-dKLA is therapeutically effective against melanoma by inducing the apoptosis of M2-like TAMs.


Assuntos
Melanoma , Meliteno , Animais , Linhagem Celular Tumoral , Imunoterapia/métodos , Macrófagos/metabolismo , Melanoma/metabolismo , Meliteno/farmacologia , Meliteno/uso terapêutico , Camundongos , Macrófagos Associados a Tumor
8.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216272

RESUMO

Triple-negative breast cancer (TNBC) accounts for approximately 10-15% of all breast cancer cases and is characterized by high invasiveness, high metastatic potential, relapse proneness, and poor prognosis. M2-like tumor-associated macrophages (TAMs) contribute to tumorigenesis and are promising targets for inhibiting breast cancer metastasis. Therefore, we investigated whether melittin-conjugated pro-apoptotic peptide (TAMpepK) exerts therapeutic effects on breast cancer metastasis by targeting M2-like TAMs. TAMpepK is composed of M2-like TAM binding peptide (TAMpep) and pro-apoptotic peptide d(KLAKLAK)2 (dKLA). A metastatic mouse model was constructed by injecting 4T1-luc2 cells either orthotopically or via tail vein injection, and tumor burden was quantified using a bioluminescence in vivo imaging system. We found that TAMpepK suppressed lung and lymph node metastases of breast cancer by eliminating M2-like TAMs without affecting the viability of M1-like macrophages and resident macrophages in the orthotopic model. Furthermore, TAMpepK reduced pulmonary seeding and the colonization of tumor cells in the tail vein injection model. The number of CD8+ T cells in contact with TAMs was significantly decreased in tumor nodules treated with TAMpepK, resulting in the functional activation of cytotoxic CD8+ T cells. Taken together, our findings suggest that TAMpepK could be a novel therapeutic agent for the inhibition of breast cancer metastasis by targeting M2-like TAMs.


Assuntos
Apoptose/efeitos dos fármacos , Metástase Linfática/tratamento farmacológico , Meliteno/farmacologia , Peptídeos/farmacocinética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Apoptose/fisiologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Metástase Linfática/patologia , Camundongos , Camundongos Endogâmicos BALB C , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
10.
Front Pharmacol ; 13: 1055264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686685

RESUMO

Paclitaxel (sold under the brand name Taxol) is a chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are used to attenuate neuropathy, no optimal treatment is available to date. In this study, the effect of cucurbitacins B and D on paclitaxel-induced neuropathic pain was assessed. Multiple paclitaxel injections (a cumulative dose of 8 mg/kg, i. p.) induced cold and mechanical allodynia from days 10 to 21 in mice, and the i. p. administration of 0.025 mg/kg of cucurbitacins B and D attenuated both allodynia types. However, as cucurbitacin B showed a more toxic effect on non-cancerous (RAW 264.7) cells, further experiments were conducted with cucurbitacin D. The cucurbitacin D dose-dependently (0.025, 0.1, and 0.5 mg/kg) attenuated both allodynia types. In the spinal cord, paclitaxel injection increased the gene expression of noradrenergic (α 1-and α 2-adrenergic) receptors but not serotonergic (5-HT1A and 3) receptors. Cucurbitacin D treatment significantly decreased the spinal α 1- but not α 2-adrenergic receptors, and the amount of spinal noradrenaline was also downregulated. However, the tyrosine hydroxylase expression measured via liquid chromatography in the locus coeruleus did not decrease significantly. Finally, cucurbitacin D treatment did not lower the anticancer effect of chemotherapeutic drugs when co-administered with paclitaxel in CT-26 cell-implanted mice. Altogether, these results suggest that cucurbitacin D could be considered a treatment option against paclitaxel-induced neuropathic pain.

11.
Toxins (Basel) ; 13(10)2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679010

RESUMO

Bee venom phospholipase A2 (bvPLA2) has been reported to have therapeutic effects such as neuroprotection, anti-inflammation, anti-nociception, anti-cancer properties, caused by increasing regulatory T cells (Tregs). The mechanism of Tregs modulation by bvPLA2 has been demonstrated by binding with the mannose receptor, CD206 in experimental models of several diseases. However, it remains unknown whether this mechanism can also be applied in human blood. In this study, we collected peripheral blood samples from healthy donors and analyzed the percentages of monocyte-derived dendritic cells with CD206 (CD206+ DCs) before expansion, the proportion of Tregs, and the subpopulations after expansion treated with bvPLA2 or PBS using flow cytometry and the correlations among them. The percentage of Tregs tended to be higher in the bvPLA2 group than in the control group. There were significant positive correlations between the CD206 population in hPBMC and the proportions of Tregs treated with bvPLA2, especially in the Treg fold change comparing the increase ratio of Tregs in bvPLA2 and in PBS. These findings indicate that bvPLA2 increased the proportion of Tregs in healthy human peripheral blood and the number of CD206+ DCs could be a predictor of the bvPLA2 response of different individuals.


Assuntos
Venenos de Abelha/enzimologia , Fosfolipases A2/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Adulto , Idoso , Venenos de Abelha/farmacologia , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Receptor de Manose/metabolismo , Pessoa de Meia-Idade , Receptores de Superfície Celular/metabolismo
12.
Int J Obes (Lond) ; 45(8): 1656-1667, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33947969

RESUMO

BACKGROUND/OBJECTIVES: Adipose tissue macrophages (ATMs) exist in either the M1 or M2 form. The anti-inflammatory M2 ATMs accumulate in lean individuals, whereas the pro-inflammatory M1 ATMs accumulate in obese individuals. Bee venom phospholipase A2 (bvPLA2), a major component in honeybee (Apis mellifera) venom, exerts potent anti-inflammatory effects via interactions with regulatory T cells (Treg) and macrophages. This study investigated the effects of bvPLA2 on a high-fat diet (HFD)-induced obesity in mice. SUBJECTS/METHODS: For in vivo experiments, male C57BL/6, CD206-deficient, and Treg-depleted mice models were fed either a normal diet 41.86 kJ (ND, 10 kcal% fat) or high-fat diet 251.16 kJ (HFD, 60 kcal% fat). Each group was i.p. injected with PBS or bvPLA2 (0.5 mg/kg) every 3 days for 11 weeks. Body weight and food intake were measured weekly. Histological changes in the white adipose tissue (WAT), liver, and kidney as well as the immune phenotypes of the WAT were examined. Immune cells, cytokines, and lipid profiles were also evaluated. The direct effects of bvPLA2 on 3T3-L1 pre-adipocytes and bone marrow-derived macrophages were measured in vitro. RESULTS: bvPLA2 markedly decreased bodyweight in HFD-fed mice. bvPLA2 treatment also decreased lipid accumulation in the liver and reduced kidney inflammation in the mice. It was confirmed that bvPLA2 exerted immunomodulatory effects through the CD206 receptor. In addition, bvPLA2 decreased M1 ATM and alleviated the M1/M2 imbalance in vivo. However, bvPLA2 did not directly inhibit adipogenesis in the 3T3-L1 adipose cells in vitro. CONCLUSIONS: bvPLA2 is a potential therapeutic strategy for the management of obesity by regulating adipose tissue macrophage homeostasis.


Assuntos
Tecido Adiposo/citologia , Venenos de Abelha , Macrófagos/efeitos dos fármacos , Obesidade/metabolismo , Fosfolipases A2 , Células 3T3-L1 , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Venenos de Abelha/enzimologia , Venenos de Abelha/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipases A2/metabolismo , Fosfolipases A2/farmacologia
13.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804803

RESUMO

Cachexia causes high mortality, low quality of life, and rapid weight loss in cancer patients. Sarcopenia, a condition characterized by the loss of muscle, is generally present in cachexia and is associated with inflammation. M2 macrophages, also known as an anti-inflammatory or alternatively activated macrophages, have been shown to play a role in muscle repair. Magnoliae Cortex (M.C) is a widely used medicinal herb in East Asia reported to have a broad range of anti-inflammatory activities; however, the effects of M.C on sarcopenia and on M2 macrophage polarization have to date not been studied. This study was designed to investigate whether the oral administration of M.C could decrease cisplatin-induced sarcopenia by modulating M2 macrophage polarization in mice. C57BL/6 mice were injected intraperitoneally with cisplatin (2.5 mg/kg) to mimic chemotherapy-induced sarcopenia. M.C extract (50, 100, and 200 mg/kg) was administered orally every 3 days (for a total of 12 times). M.C (100 and 200 mg/kg) significantly alleviated the cisplatin-induced loss of body mass, skeletal muscle weight, and grip strength. In addition, M.C increased the expression of M2 macrophage markers, such as MRC1, CD163, TGF-ß, and Arg-1, and decreased the expression of M1-specific markers, including NOS2 and TNF-α, in skeletal muscle. Furthermore, the levels of like growth factor-1(IGF-1), as well as the number of M2a and M2c macrophages, significantly increased in skeletal muscle after M.C administration. M.C did not interfere with the anticancer effect of cisplatin in colon cancer. Our results demonstrated that M.C can alleviate cisplatin-induced sarcopenia by increasing the number of M2 macrophages. Therefore, our findings suggest that M.C could be used as an effective therapeutic agent to reverse or prevent cisplatin-induced sarcopenia.


Assuntos
Cisplatino/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Magnolia/química , Atrofia Muscular/metabolismo , Extratos Vegetais/farmacologia , Sarcopenia/etiologia , Sarcopenia/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/patologia , Extratos Vegetais/química , Sarcopenia/tratamento farmacológico , Sarcopenia/patologia
14.
Sci Rep ; 10(1): 16112, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999298

RESUMO

Radiation therapy is the mainstay in the treatment of lung cancer, and lung fibrosis is a radiotherapy-related major side effect that can seriously reduce patient's quality of life. Nevertheless, effective strategies for protecting against radiation therapy-induced fibrosis have not been developed. Hence, we investigated the radioprotective effects and the underlying mechanism of the standardized herbal extract PM014 on radiation-induced lung fibrosis. Ablative radiation dose of 75 Gy was focally delivered to the left lung of mice. We evaluated the effects of PM014 on radiation-induced lung fibrosis in vivo and in an in vitro model. Lung volume and functional changes were evaluated using the micro-CT and flexiVent system. Fibrosis-related molecules were evaluated by immunohistochemistry, western blot, and real-time PCR. A orthotopic lung tumour mouse model was established using LLC1 cells. Irradiated mice treated with PM014 showed a significant improvement in collagen deposition, normal lung volume, and functional lung parameters, and these therapeutic effects were better than those of amifostine. PM104 attenuated radiation-induced increases in NF-κB activity and inhibited radiation-induced p65 translocation, ROS production, DNA damage, and epithelial-mesenchymal transition. PM104 effectively alleviated fibrosis in an irradiated orthotopic mouse lung tumour model while not attenuating the efficacy of the radiation therapy by reduction of the tumour. Standardized herbal extract PM014 may be a potential therapeutic agent that is able to increase the efficacy of radiotherapy by alleviating radiation-induced lung fibrosis.


Assuntos
NADPH Oxidase 4/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Qualidade de Vida , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/metabolismo , Pneumonite por Radiação/tratamento farmacológico , Pneumonite por Radiação/metabolismo
15.
Integr Cancer Ther ; 19: 1534735420924711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32590912

RESUMO

PM014 (HL301) is a standardized herbal mixture derived from a traditional Korean medicine, Chung-Sang-Bo-Ha-Tang. Previously, we reported that PM014 treatment significantly suppressed pulmonary fibrosis, one of the frequent adverse effects of anticancer therapy in lung cancer. Before the clinical application of PM014 in anticancer therapy, the safety and efficacy of PM014 in combination with conventional anticancer drugs should be addressed to determine whether PM014 can be used in lung cancer. Lewis lung cancer-bearing mice were injected with 10 mg/kg of cisplatin or paclitaxel on day 5. Starting on day 7, the mice were administered 200 mg/kg PM014 every 2 days. On day 15, all mice were assessed by biochemical and histological analyses. PM014 did not block the antitumor activity of cisplatin and paclitaxel. Coadministration of PM014 and antitumor agents did not elevate the aspartate transaminase/alanine transaminase ratio or the blood urea nitrogen/creatinine ratio. Histopathological analysis also showed that PM014 did not induce hepatic or renal injury. Moreover, PM014 had no apparent inhibitory effects on drug metabolizing enzymes, indicating that PM014 did not alter the pharmacokinetics of chemotherapeutic drugs. Overall, these data show the safety and compatibility of combination therapy of PM014 and chemotherapies for the treatment of lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Paclitaxel/efeitos adversos
16.
Front Immunol ; 11: 77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117241

RESUMO

Cancer chemotherapy induces sarcopenia, which is a rapid loss of muscle mass that directly restricts daily activities and leads to poor quality of life and increased mortality. Although hormone-related therapies have been used to improve appetite and nutritional status, current treatments are considered palliative. Thus, the protection of skeletal muscle loss without adverse effects is essential to allow the maintenance of chemotherapy in cancer patients. Magnolol from Magnolia officinalis has several pharmacological effects including anti-cancer and anti-inflammatory activities, but the protection from muscle atrophy is not well-understood. In the present study, we investigated the effects of magnolol on muscle wasting and macrophage subtypes in a cisplatin-induced sarcopenia mouse model. We showed that magnolol significantly attenuated the body weight and the muscle loss induced by cisplatin injection. The diameter of the tibialis anterior muscle was markedly increased after magnolol treatment in cisplatin-treated mice. Importantly, magnolol increased macrophage infiltration into skeletal muscle while not affecting proliferation of macrophages. Magnolol attenuated the imbalance of M1/M2c macrophages by increasing CD206+CD163+ M2c tissue reparative macrophages. Further, magnolol increased insulin-like growth factor (IGF)-1 expression. This effect was also observed in bone marrow-derived macrophages upon magnolol treatment. Taken together, magnolol may be a promising chemoprotective agent for the prevention of muscle atrophy through the upregulating M2c macrophages, which are a major source of IGF-1.


Assuntos
Compostos de Bifenilo/farmacologia , Lignanas/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , Animais , Antineoplásicos/toxicidade , Carcinoma Pulmonar de Lewis , Cisplatino/toxicidade , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Toxins (Basel) ; 11(6)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31248167

RESUMO

Bee venom contains a number of pharmacologically active components, including enzymes and polypeptides such as phospholipase A2 (PLA2) and melittin, which have been shown to exhibit therapeutic benefits, mainly via attenuation of inflammation, neurotoxicity, and nociception. The individual components of bee venom may manifest distinct biological actions and therapeutic potential. In this study, the potential mechanisms of action of PLA2 and melittin, among different compounds purified from honey bee venom, were evaluated against Parkinson's disease (PD). Notably, bee venom PLA2 (bvPLA2), but not melittin, exhibited neuroprotective activity against PD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. MPTP-induced behavioral deficits were also abolished after bvPLA2 treatment, depending on the PLA2 content. Further, bvPLA2 administration activated regulatory T cells (Tregs) while inhibiting inflammatory T helper (Th) 1 and Th17 cells in the MPTP mouse model of PD. These results indicate that bvPLA2, but not melittin, protected against MPTP and alleviated inflammation in PD. Thus, bvPLA2 is a promising and effective therapeutic agent in Parkinson's disease.


Assuntos
Venenos de Abelha/química , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , Fosfolipases A2/uso terapêutico , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Meliteno/isolamento & purificação , Meliteno/uso terapêutico , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/isolamento & purificação , Fosfolipases A2/isolamento & purificação , Linfócitos T Reguladores/efeitos dos fármacos
18.
J Immunother Cancer ; 7(1): 147, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31174610

RESUMO

BACKGROUND: Tumor-associated macrophages (TAMs) are the major component of tumor-infiltrating immune cells. Macrophages are broadly categorized as M1 or M2 types, and TAMs have been shown to express an M2-like phenotype. TAMs promote tumor progression and contribute to resistance to chemotherapies. Therefore, M2-like TAMs are potential targets for the cancer immunotherapy. In this study, we targeted M2-like TAMs using a hybrid peptide, MEL-dKLA, composed of melittin (MEL), which binds preferentially to M2-like TAMs, and the pro-apoptotic peptide d (KLAKLAK)2 (dKLA), which induces mitochondrial death after cell membrane penetration. METHODS: The M1 or M2-differentiated RAW264.7 cells were used for mitochondrial colocalization and apoptosis test in vitro. For in vivo study, the murine Lewis lung carcinoma cells were inoculated subcutaneously in the right flank of mouse. The dKLA, MEL and MEL-dKLA peptides were intraperitoneally injected at 175 nmol/kg every 3 days. Flow cytometry analysis of tumor-associated macrophages and immunofluorescence staining were performed to investigate the immunotherapeutic effects of MEL-dKLA. RESULTS: We showed that MEL-dKLA induced selective cell death of M2 macrophages in vitro, whereas MEL did not disrupt the mitochondrial membrane. We also showed that MEL-dKLA selectively targeted M2-like TAMs without affecting other leukocytes, such as T cells and dendritic cells, in vivo. These features resulted in lower tumor growth rates, tumor weights, and angiogenesis in vivo. Importantly, although both MEL and MEL-dKLA reduced numbers of CD206+ M2-like TAMs in tumors, only MEL-dKLA induced apoptosis in CD206+ M2-like TAMs, and MEL did not induce cell death. CONCLUSION: Taken together, our study demonstrated that MEL-dKLA could be used to target M2-like TAMs as a promising cancer therapeutic agent.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Imunoterapia/métodos , Macrófagos/imunologia , Meliteno/metabolismo , Peptídeos/metabolismo , Animais , Apoptose , Citometria de Fluxo , Humanos , Camundongos
19.
Sci Rep ; 8(1): 16860, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30443024

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating and common chronic lung disease pathologically characterized by loss of epithelial cells and activation of fibroblasts and myofibroblasts. The etiology of IPF remains unclear and the disease pathology is poorly understood with no known efficacious therapy. PM014 is an herbal extract that has been shown to have beneficial effects in pulmonary diseases, which are likely to exert anti-inflammatory bioactions. In the present study, we observed that bleomycin (BLM) caused increased inflammatory infiltration as well as collagen deposition in lungs of mice on day 14 after treatment. Administration of PM014 suppressed BLM-induced inflammatory responses and fibrotic changes in dose-dependent manner in mice. Additionally, we provided in vitro evidence suggesting that PM014 inhibited TGF-ß1-induced epithelial-mesenchymal transition (EMT) and fibroblast activation in alveolar epithelial cells and human lung fibroblasts from healthy donor and IPF patients. PM014 appeared to target TGF-ß1 signaling via Smad-dependent pathways and p38 mitogen-activated protein kinases (MAPKs) pathways. Taken together, our data suggest that PM014 administration exerts a protective effect against lung fibrosis and highlight PM014 as a viable treatment option that may bring benefits to patient with IPF.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Extratos Vegetais/uso terapêutico , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Células A549 , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Bleomicina , Peso Corporal/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Fibrose Pulmonar Idiopática/patologia , Masculino , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Alvéolos Pulmonares/patologia , Padrões de Referência , Proteínas Smad/metabolismo , Análise de Sobrevida , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Front Physiol ; 9: 47, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483875

RESUMO

Cigarette smoke (CS) is considered as a major risk factor for pulmonary and intestinal inflammation. CS leads to macrophage infiltration in the mucosae of the lung and colon, inducing the uncontrolled secretion of inflammatory mediators, and thus promoting inflammatory response. In this study, we investigated whether macrophage depletion modulates cigarette smoke (CS)-induced inflammatory response in both the lung and colon. The mice were exposed to CS for 30 min, after which they were rested in a fresh air environment for 30 min. The total duration of exposure to CS was 2 h per day for 4 weeks. Macrophage depletion state was made with the injection of clodronate containing liposome. Individual body weights were measured twice a week, and the mice were sacrificed on day 28. Hematoxylin and eosin (H&E) staining was performed in the lung and colon tissue to determine histological changes. Inflammatory mediators' synthesis was analyzed using ELISA and western blotting. Clodronate liposome treatment ameliorated pathological changes associated with the infiltration of immune cells in the lung and colon. Also, clodronate liposome injected mice showed significantly lower level of inflammatory mediators, including cytokines and chemokine and proteases. Our results indicated that macrophage depletion by clodronate liposome treatment attenuates CS-induced inflammatory response in both the lung and colon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA