Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 28: 101182, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39205874

RESUMO

Prosthesis-induced pathological calcification is a significant challenge in biomaterial applications and is often associated with various reconstructive medical procedures. It is uncertain whether the fibrous extracellular matrix (ECM) adjacent to biomaterials directly triggers osteogenic trans-differentiation in nearby cells. To investigate this possibility, we engineered a heterogeneous polystyrene fibrous matrix (PSF) designed to mimic the ECM. Our findings revealed that the myoblasts grown on this PSF acquired osteogenic properties, resulting in mineralization both in vitro and in vivo. Transcriptomic analyses indicated a notable upregulation in the expression of the long noncoding RNA metastsis-associated lung adenocarcinoma transcript 1 (Malat1) in the C2C12 myoblasts cultured on PSF. Intriguingly, silencing Malat1 curtailed the PSF-induced mineralization and downregulated the expression of bone morphogenetic proteins (Bmps) and osteogenic markers. Further, we found that PSF prompted the activation of Yap1 signaling and epigenetic modifications in the Malat1 promoter, crucial for the expression of Malat1. These results indicate that the fibrous matrix adjacent to biomaterials can instigate Malat1 upregulation, subsequently driving osteogenic trans-differentiation in myoblasts and ectopic calcification through its transcriptional regulation of osteogenic genes, including Bmps. Our findings point to a novel therapeutic avenue for mitigating prosthesis-induced pathological calcification, heralding new possibilities in the field of biomaterial-based therapies.

2.
ACS Synth Biol ; 13(8): 2587-2599, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39110782

RESUMO

Genetic code expansion (GCE) is a powerful strategy that expands the genetic code of an organism for incorporating noncanonical amino acids into proteins using engineered tRNAs and aminoacyl-tRNA synthetases (aaRSs). While GCE has opened up new possibilities for synthetic biology, little is known about the potential side effects of exogenous aaRS/tRNA pairs. In this study, we investigated the impact of exogenous aaRS and amber suppressor tRNA on gene expression in Escherichia coli. We discovered that in DH10ß ΔcyaA, transformed with the F1RP/F2P two-hybrid system, the high consumption rate of cellular adenosine triphosphate by exogenous aaRS/tRNA at elevated temperatures induces temperature sensitivity in the expression of genes regulated by the cyclic AMP receptor protein (CRP). We harnessed this temperature sensitivity to create a novel biological AND gate in E. coli, responsive to both p-benzoylphenylalanine (BzF) and low temperature, using a BzF-dependent variant of E. coli chorismate mutase and split subunits of Bordetella pertussis adenylate cyclase. Our study provides new insights into the unexpected effects of exogenous aaRS/tRNA pairs and offers a new approach for constructing a biological logic gate.


Assuntos
Aminoácidos , Aminoacil-tRNA Sintetases , Escherichia coli , RNA de Transferência , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoácidos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Código Genético , Proteína Receptora de AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , Biologia Sintética/métodos , Corismato Mutase/genética , Corismato Mutase/metabolismo , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Regulação Bacteriana da Expressão Gênica , Benzofenonas
3.
Sci Rep ; 14(1): 5908, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467701

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory condition that is influenced by various factors, including environmental factors, immune responses, and genetic elements. Among the factors that influence IBD progression, macrophages play a significant role in generating inflammatory mediators, and an increase in the number of activated macrophages contributes to cellular damage, thereby exacerbating the overall inflammatory conditions. HSPA9, a member of the heat shock protein 70 family, plays a crucial role in regulating mitochondrial processes and responding to oxidative stress. HSPA9 deficiency disrupts mitochondrial dynamics, increasing mitochondrial fission and the production of reactive oxygen species. Based on the known functions of HSPA9, we considered the possibility that HSPA9 reduction may contribute to the exacerbation of colitis and investigated its relevance. In a dextran sodium sulfate-induced colitis mouse model, the downregulated HSPA9 exacerbates colitis symptoms, including increased immune cell infiltration, elevated proinflammatory cytokines, decreased tight junctions, and altered macrophage polarization. Moreover, along with the increased mitochondrial fission, we found that the reduction in HSPA9 significantly affected the superoxide dismutase 1 levels and contributed to cellular death. These findings enhance our understanding of the intricate mechanisms underlying colitis and contribute to the development of novel therapeutic approaches for this challenging condition.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Morte Celular , Colite/metabolismo , Colo/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo
4.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257395

RESUMO

Autophagy is a pivotal biological process responsible for maintaining the homeostasis of intracellular organelles. Yet the molecular intricacies of peroxisomal autophagy (pexophagy) remain largely elusive. From a ubiquitin-related chemical library for screening, we identified several inhibitors of the Von Hippel-Lindau (VHL) E3 ligase, including VH298, thereby serving as potent inducers of pexophagy. In this study, we observed that VH298 stimulates peroxisomal degradation by ATG5 dependently and escalates the ubiquitination of the peroxisomal membrane protein ABCD3. Interestingly, the ablation of NBR1 is similar to the curtailed peroxisomal degradation in VH298-treated cells. We also found that the pexophagy induced by VH298 is impeded upon the suppression of gene expression by the translation inhibitor cycloheximide. Beyond VHL inhibition, we discovered that roxadustat, a direct inhibitor of HIF-α prolyl hydroxylase, is also a potent inducer of pexophagy. Furthermore, we found that VH298-mediated pexophagy is blocked by silencing HIF-1α. In conclusion, our findings suggest that VH298 promotes pexophagy by modulating VHL-mediated HIF-α transcriptional activity.


Assuntos
Autofagia , Ciclopropanos , Macroautofagia , Pirrolidinas , Tiazóis , Humanos , Células HeLa , Homeostase , Proteína Supressora de Tumor Von Hippel-Lindau/genética
5.
Mol Brain ; 16(1): 41, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170364

RESUMO

The primary cilium, an antenna-like structure on the cell surface, acts as a mechanical and chemical sensory organelle. Primary cilia play critical roles in sensing the extracellular environment to coordinate various developmental and homeostatic signaling pathways. Here, we showed that the depletion of heat shock protein family A member 9 (HSPA9)/mortalin stimulates primary ciliogenesis in SH-SY5Y cells. The downregulation of HSPA9 enhances mitochondrial stress by increasing mitochondrial fragmentation and mitochondrial reactive oxygen species (mtROS) generation. Notably, the inhibition of either mtROS production or mitochondrial fission significantly suppressed the increase in primary ciliogenesis in HSPA9-depleted cells. In addition, enhanced primary ciliogenesis contributed to cell survival by activating AKT in SH-SY5Y cells. The abrogation of ciliogenesis through the depletion of IFT88 potentiated neurotoxicity in HSPA9-knockdown cells. Furthermore, both caspase-3 activation and cell death were increased by MK-2206, an AKT inhibitor, in HSPA9-depleted cells. Taken together, our results suggest that enhanced primary ciliogenesis plays an important role in preventing neurotoxicity caused by the loss of HSPA9 in SH-SY5Y cells.


Assuntos
Neuroblastoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Apoptose , Estresse Oxidativo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mitocondriais/metabolismo
6.
Cells ; 11(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36078130

RESUMO

Primary cilia help to maintain cellular homeostasis by sensing conditions in the extracellular environment, including growth factors, nutrients, and hormones that are involved in various signaling pathways. Recently, we have shown that enhanced primary ciliogenesis in dopamine neurons promotes neuronal survival in a Parkinson's disease model. Moreover, we performed fecal metabolite screening in order to identify several candidates for improving primary ciliogenesis, including L-carnitine and acetyl-L-carnitine. However, the role of carnitine in primary ciliogenesis has remained unclear. In addition, the relationship between primary cilia and neurodegenerative diseases has remained unclear. In this study, we have evaluated the effects of carnitine on primary ciliogenesis in 1-methyl-4-phenylpyridinium ion (MPP+)-treated cells. We found that both L-carnitine and acetyl-L-carnitine promoted primary ciliogenesis in SH-SY5Y cells. In addition, the enhancement of ciliogenesis by carnitine suppressed MPP+-induced mitochondrial reactive oxygen species overproduction and mitochondrial fragmentation in SH-SY5Y cells. Moreover, carnitine inhibited the production of pro-inflammatory cytokines in MPP+-treated SH-SY5Y cells. Taken together, our findings suggest that enhanced ciliogenesis regulates MPP+-induced neurotoxicity and inflammation.


Assuntos
Neuroblastoma , Síndromes Neurotóxicas , 1-Metil-4-fenilpiridínio/toxicidade , Acetilcarnitina/farmacologia , Apoptose , Carnitina/farmacologia , Linhagem Celular Tumoral , Neurônios Dopaminérgicos , Humanos , Inflamação
7.
Cells ; 12(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611940

RESUMO

Selective autophagy controls cellular homeostasis by degrading unnecessary or damaged cellular components. Melanosomes are specialized organelles that regulate the biogenesis, storage, and transport of melanin in melanocytes. However, the mechanisms underlying melanosomal autophagy, known as the melanophagy pathway, are poorly understood. To better understand the mechanism of melanophagy, we screened an endocrine-hormone chemical library and identified nalfurafine hydrochlorides, a κ-opioid receptor agonist, as a potent inducer of melanophagy. Treatment with nalfurafine hydrochloride increased autophagy and reduced melanin content in alpha-melanocyte-stimulating hormone (α-MSH)-treated cells. Furthermore, inhibition of autophagy blocked melanosomal degradation and reversed the nalfurafine hydrochloride-induced decrease in melanin content in α-MSH-treated cells. Consistently, treatment with other κ-opioid receptor agonists, such as MCOPPB or mianserin, inhibited excessive melanin production but induced autophagy in B16F1 cells. Furthermore, nalfurafine hydrochloride inhibited protein kinase A (PKA) activation, which was notably restored by forskolin, a PKA activator. Additionally, forskolin treatment further suppressed melanosomal degradation as well as the anti-pigmentation activity of nalfurafine hydrochloride in α-MSH-treated cells. Collectively, our data suggest that stimulation of κ-opioid receptors induces melanophagy by inhibiting PKA activation in α-MSH-treated B16F1 cells.


Assuntos
Melaninas , alfa-MSH , alfa-MSH/farmacologia , Colforsina , Melaninas/metabolismo , Receptores Opioides kappa/agonistas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Animais , Camundongos
8.
Medicine (Baltimore) ; 100(49): e28102, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34889265

RESUMO

RATIONALE: Laryngomalacia is defined as the collapse of supraglottic structures and can cause not only strider but also trigger difficulties with ventilation and endotracheal intubation during anesthesia management. High-flow nasal cannula (HFNC) has been used to manage patients at high risk of hypoxemia in the intensive care unit; however, limited literature information is available for the application of HFNC to infant patients with laryngomalacia during anesthesia practice. PATIENT CONCERNS: A 2-month-old male infant was scheduled to undergo surgery for inguinal hernia and undescended testis with general anesthesia. DIAGNOSIS: The patient had subcostal retraction while breathing and frequent oxygen desaturation events and was diagnosed laryngomalacia. INTERVENTIONS: After the patient was supplied oxygen via HFNC and then given general anesthesia, the initial 2 attempts of endotracheal intubation with a rigid laryngoscope were unsuccessful because the vocal cords were obscured by the epiglottis. A third intubation attempt was performed and successful with a 3.0-sized, uncuffed endotracheal tube within 20 minutes of the initial attempt. OUTCOMES: No airway complications emerged and oxygen saturation remained at greater than 98% during general anesthesia. The patient was discharged 5 days after surgery without any adverse side effects. LESSONS: Continuous oxygenation via HFNC is a good choice to prevent desaturation during difficult tracheal intubations in infant patients with laryngomalacia. This device is expected to be useful for intubation not only in patients with laryngomalacia, but also in infant patients with a predicted high risk of oxygen desaturation events during general anesthesia.


Assuntos
Anestesia Geral , Cânula , Intubação Intratraqueal , Laringomalácia/terapia , Humanos , Lactente , Masculino , Oxigênio , Saturação de Oxigênio
9.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681602

RESUMO

Particulate matters (PMs) increase oxidative stress and inflammatory response in different tissues. PMs disrupt the formation of primary cilia in various skin cells, including keratinocytes and melanocytes. In this study, we found that 2-isopropylmalic acid (2-IPMA) promoted primary ciliogenesis and restored the PM2.5-induced dysgenesis of primary cilia in dermal fibroblasts. Moreover, 2-IPMA inhibited the generation of excessive reactive oxygen species and the activation of stress kinase in PM2.5-treated dermal fibroblasts. Further, 2-IPMA inhibited the production of pro-inflammatory cytokines, including IL-6 and TNF-α, which were upregulated by PM2.5. However, the inhibition of primary ciliogenesis by IFT88 depletion reversed the downregulated cytokines by 2-IPMA. Moreover, we found that PM2.5 treatment increased the MMP-1 expression in dermal fibroblasts and a human 3-D-skin model. The reduced MMP-1 expression by 2-IPMA was further reversed by IFT88 depletion in PM2.5-treated dermal fibroblasts. These findings suggest that 2-IPMA ameliorates PM2.5-induced inflammation by promoting primary ciliogenesis in dermal fibroblasts.


Assuntos
Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Malatos/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Cílios/metabolismo , Cílios/patologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metaloproteinase 1 da Matriz/genética , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Arch Pharm Res ; 44(6): 621-631, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34100261

RESUMO

The maintenance of lysosomal integrity is essential for lysosome function and cell fate. Damaged lysosomes are degraded by lysosomal autophagy, lysophagy. The mechanism underlying lysophagy remains largely unknown; this study aimed to contribute to the understanding of this topic. A cell-based screening system was used to identify novel lysophagy modulators. Triamterene (6-phenylpteridine-2,4,7-triamine) was identified as one of the most potent lysophagy inducers from the screening process. We found that triamterene causes lysosomal rupture without affecting other cellular organelles and increases autophagy flux in HepG2 cells. Damaged lysosomes in triamterene-treated cells were removed by autophagy-mediated pathway, which was inhibited by depletion of the autophagy regulator, ATG5 or SQSTM1. In addition, treatment of triamterene decreased the integrity of lysosome and cell viability, which were rescued by removing the triamterene treatment in HepG2 cells. Hence, our data suggest that triamterene is a novel lysophagy inducer through the disruption of lysosomal integrity.


Assuntos
Autofagia/efeitos dos fármacos , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Lisossomos/efeitos dos fármacos , Triantereno/farmacologia , Autofagia/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células HeLa , Células Hep G2 , Humanos , Lisossomos/metabolismo
11.
PLoS One ; 15(9): e0239019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941497

RESUMO

The melanosome is a specialized membrane-bound organelle that is involved in melanin synthesis, storage, and transportation. In contrast to melanosome biogenesis, the processes underlying melanosome degradation remain largely unknown. Autophagy is a process that promotes degradation of intracellular components' cooperative process between autophagosomes and lysosomes, and its role for process of melanosome degradation remains unclear. Here, we assessed the regulation of autophagy and its contributions to depigmentation associated with Melasolv (3,4,5-trimethoxycinnamate thymol ester). B16F1 cells-treated with Melasolv suppressed the α-MSH-stimulated increase of melanin content and resulted in the activation of autophagy. However, introduction of bafilomycin A1 strongly suppressed melanosome degradation in Melasolv-treated cells. Furthermore, inhibition of autophagy by ATG5 resulted in significant suppression of Melasolv-mediated depigmentation in α-MSH-treated cells. Taken together, our results suggest that treatment with Melasolv inhibits skin pigmentation by promoting melanosome degradation via autophagy activation.


Assuntos
Cinamatos/farmacologia , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Cinamatos/metabolismo , Macrolídeos/farmacologia , Melaninas/metabolismo , Melanócitos/metabolismo , Camundongos , Pigmentação/efeitos dos fármacos , Transtornos da Pigmentação/metabolismo , Pigmentação da Pele/efeitos dos fármacos , alfa-MSH/efeitos dos fármacos , alfa-MSH/metabolismo
12.
Biochem Biophys Res Commun ; 531(2): 209-214, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32792197

RESUMO

Melanosomes are specialized membrane-bound organelles that are involved in melanin synthesis. Unlike melanosome biogenesis, the melanosome degradation pathway is poorly understood. Among the cellular processes, autophagy controls degradation of intracellular components by cooperating with lysosomes. In this study, we showed that ursolic acid inhibits skin pigmentation by promoting melanosomal autophagy, or melanophagy, in melanocytes. We found that B16F1 cells treated with ursolic acid suppressed alpha-melanocyte stimulating hormone (α-MSH) stimulated increase in melanin content and activated autophagy. In addition, we found that treatment with ursolic acid promotes melanosomal degradation, and bafilomycin A1 inhibition of autophagosome-lysosome fusion blocked the removal of melanosomes in α-MSH-stimulated B16F1 cells. Furthermore, depletion of the autophagy-related gene 5 (ATG5) resulted in significant suppression of ursolic acid-mediated anti-pigmentation activity and autophagy in α-MSH-treated B16F1 cells. Taken together, our results suggest that ursolic acid inhibits skin pigmentation by increasing melanosomal degradation in melanocytes.


Assuntos
Autofagia/efeitos dos fármacos , Melanoma Experimental/patologia , Melanossomas/patologia , Pigmentação da Pele/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Linhagem Celular Tumoral , Melaninas/biossíntese , Melanossomas/efeitos dos fármacos , Camundongos , Triterpenos/química , alfa-MSH/farmacologia , Ácido Ursólico
14.
Cell Death Dis ; 10(12): 952, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844040

RESUMO

A primary cilium is an antenna-like structure on the cell surface that plays a crucial role in sensory perception and signal transduction. Mitochondria, the 'powerhouse' of the cell, control cell survival, and death. The cellular ability to remove dysfunctional mitochondria through mitophagy is important for cell survival. We show here that mitochondrial stress, caused by respiratory complex inhibitors and excessive fission, robustly stimulates ciliogenesis in different types of cells including neuronal cells. Mitochondrial stress-induced ciliogenesis is mediated by mitochondrial reactive oxygen species generation, subsequent activation of AMP-activated protein kinase and autophagy. Conversely, abrogation of ciliogenesis compromises mitochondrial stress-induced autophagy, leading to enhanced cell death. In mice, treatment with mitochondrial toxin, MPTP elicits ciliary elongation and autophagy in the substantia nigra dopamine neurons. Blockade of cilia formation in these neurons attenuates MPTP-induced autophagy but facilitates dopamine neuronal loss and motor disability. Our findings demonstrate the important role of primary cilia in cellular pro-survival responses during mitochondrial stress.


Assuntos
Autofagia/genética , Mitocôndrias/genética , Mitofagia/genética , Doença de Parkinson/genética , Proteínas Quinases Ativadas por AMP/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Cílios/genética , Cílios/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Substância Negra/metabolismo , Substância Negra/patologia
15.
Sci Rep ; 9(1): 3994, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850686

RESUMO

Exposure to fine particulate matter (PM) with diameter <2.5 µm (PM2.5) causes epithelium injury and endothelial dysfunction. Primary cilia are sensory organelles that transmit extracellular signals into intracellular biochemical responses and have roles in physiology. To date, there have been no studies investigating whether PM2.5 affects primary cilia in skin. We addressed this in the present study using normal human epidermal keratinocytes (NHEKs) and retinal pigment epithelium (RPE) cells. We found that formation of primary cilium is increased in differentiated NHEKs. However, treatment with PM2.5 blocked increased ciliogenesis in NHEKs and RPE cells. Furthermore, PM2.5 transcriptionally upregulated small proline rich protein 3 (SPRR3) expression by activating c-Jun, and ectopic expression of SPRR3 inhibits suppressed the ciliogenesis. Accordingly, treatment with c-Jun activator (anisomycin) induced SPRR3 expression, whereas the inhibitor (SP600125) recovered the ciliated cells and cilium length in PM2.5-treated cells. Moreover, c-Jun inhibitor suppressed upregulation of SPRR3 in PM2.5-treated cells. Taken together, our finding suggested that PM2.5 inhibits ciliogenesis by increasing SPRR3 expression via c-Jun activation in RPE cells and keratinocytes.


Assuntos
Cílios/efeitos dos fármacos , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Queratinócitos/efeitos dos fármacos , Material Particulado/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Pele/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Cílios/metabolismo , Humanos , Queratinócitos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pele/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Autophagy ; 15(9): 1495-1505, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30821607

RESUMO

Several studies have shown that dysfunction of macroautophagy/autophagy is associated with many human diseases, including neurodegenerative disease and cancer. To explore the molecular mechanisms of autophagy, we performed a cell-based functional screening with SH-SY5Y cells stably expressing GFP-LC3, using an siRNA library and identified TMED10 (transmembrane p24 trafficking protein 10), previously known as the γ-secretase-modulating protein, as a novel regulator of autophagy. Further investigations revealed that depletion of TMED10 induced the activation of autophagy. Interestingly, protein-protein interaction assays showed that TMED10 directly binds to ATG4B (autophagy related gene 4B cysteine peptidase), and the interaction is diminished under autophagy activation conditions such as rapamycin treatment and serum deprivation. In addition, inhibition of TMED10 significantly enhanced the proteolytic activity of ATG4B for LC3 cleavage. Importantly, the expression of TMED10 in AD (Alzheimer disease) patients was considerably decreased, and downregulation of TMED10 increased amyloid-ß (Aß) production. Treatment with Aß increased ATG4B proteolytic activity as well as dissociation of TMED10 and ATG4B. Taken together, our results suggest that the AD-associated protein TMED10 negatively regulates autophagy by inhibiting ATG4B activity.Abbreviations: Aß: amyloid-ß; AD: Alzheimer disease; ATG: autophagy related; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CD: cytosolic domain; GFP: green fluorescent protein; GLUC: Gaussia luciferase; IP: immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LD: luminal domain; PD: Parkinson disease; ROS: reactive oxygen species; siRNA: small interfering RNA; SNP: single-nucleotide polymorphisms; TD: transmembrane domain; TMED10: transmembrane p24 trafficking protein 10; VC: C terminus of Venus fluorescent protein; VN: N terminus of Venus fluorescent protein.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/genética , Encéfalo/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas/metabolismo , Doença de Alzheimer/genética , Autofagossomos/efeitos dos fármacos , Autofagossomos/enzimologia , Autofagossomos/ultraestrutura , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Regulação para Baixo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Proteínas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
17.
Anticancer Res ; 38(1): 271-277, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277783

RESUMO

The ultraviolent irradiation resistance-associated gene (UVRAG), a component of the Beclin 1/autophagy-related 6 complex, regulates the autophagy initiation step and functions in the DNA-damage response. UVRAG is frequently mutated in various cancer types, and mutations of UVRAG increase sensitivity to chemotherapy by impairing DNA-damage repair. In this study, we addressed the epigenetic regulation of UVRAG in colorectal cancer cells. UVRAG expression was increased in cells treated with histone deacetylase (HDAC) inhibitors, such as valproic acid and suberoylanilide hydroxamic acid. Down-regulation of HDAC1 enhanced UVRAG expression in colorectal cancer cells. In addition, both chemical and genetic inhibition of HDAC1 reduced the activation of caspase-3 and cytotoxicity in 5-fluorouracil (5FU)-treated cancer cells. In contrast, UVRAG overexpression inhibited caspase activation and cell death in 5FU-treated cells. Taken together, our findings suggest that up-regulation of UVRAG by HDAC1 inhibition potentiates DNA-damage-mediated cell death in colorectal cancer cells.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias Colorretais/metabolismo , Fluoruracila/farmacologia , Histona Desacetilase 1/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo , Morte Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Dano ao DNA , Epigênese Genética , Células HCT116 , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Regulação para Cima
19.
Arch Pharm Res ; 39(8): 1137-43, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27515055

RESUMO

Mitochondrial dynamics control mitochondrial morphology and function, and aberrations in these are associated with various neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. To identify novel regulators of mitochondrial dynamics, we screened a phytochemical library and identified liquiritigenin as a potent inducer of mitochondrial fusion. Treatment with liquiritigenin induced an elongated mitochondrial morphology in SK-N-MC cells. In addition, liquiritigenin rescued mitochondrial fragmentation induced by knockout of mitochondrial fusion mediators such as Mfn1, Mfn2, and Opa1. Furthermore, we found that treatment with liquiritigenin notably inhibited mitochondrial fragmentation and cytotoxicity induced by Aß in SK-N-MC cells.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Flavanonas/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Neuroblastoma/metabolismo , Fragmentos de Peptídeos/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Flavanonas/química , Flavanonas/uso terapêutico , Técnicas de Inativação de Genes , Humanos , Camundongos , Dinâmica Mitocondrial/fisiologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia
20.
Int J Radiat Biol ; 89(12): 1035-44, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23859432

RESUMO

PURPOSE: Professional and public concern about the potential adverse effects of man-made electromagnetic fields (EMF) on the human body has dramatically expanded in recent years. Despite numerous attempts to investigate this issue, the long-standing challenge of reproducibility surrounding alternating EMF effects on human health remains unresolved. Our chief aim was to investigate a plausible mechanism for this phenomenon. MATERIALS AND METHODS: Growth of cultured human cancer cells, DU145 and Jurkat, exposed to power frequency magnetic field (MF) (60 Hz, 1 mT) for 3 days, was determined using a 2-(4-Iodophenyl)- 3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) assay and a trypan blue exclusion assay. This experiment was repeated at incubators long-term monitoring period up to 5.3 years. A periodogram analysis was performed to investigate periodic patterns in the MF and sham effects on cell growth. RESULTS: Unlike conventional assumptions, the MF effect on growth in both cell types was promotive or suppressive in a period-dependent manner. The converse cell growth induced by the MF was consistent in incubators, with little variation. CONCLUSIONS: Spatiotemporal evidence suggests that the period-dependent converse cell growth by the MF may contribute to the poor reproducibility and explain the adverse effects observed in previous experimental and epidemiological investigations. Additionally, the novel approach of this study may be applied to design features required to experimentally determine the effects of EMF on living organisms in a convincing manner.


Assuntos
Linhagem Celular Tumoral/citologia , Proliferação de Células , Campos Eletromagnéticos , Humanos , Células Jurkat , Masculino , Neoplasias da Próstata , Reprodutibilidade dos Testes , Sais de Tetrazólio , Fatores de Tempo , Azul Tripano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA