Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(7): e3002192, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37478146

RESUMO

During exercise, skeletal muscle is exposed to a low oxygen condition, hypoxia. Under hypoxia, the transcription factor hypoxia-inducible factor-1α (HIF-1α) is stabilized and induces expressions of its target genes regulating glycolytic metabolism. Here, using a skeletal muscle-specific gene ablation mouse model, we show that Brg1/Brm-associated factor 155 (Baf155), a core subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is essential for HIF-1α signaling in skeletal muscle. Muscle-specific ablation of Baf155 increases oxidative metabolism by reducing HIF-1α function, which accompanies the decreased lactate production during exercise. Furthermore, the augmented oxidation leads to high intramuscular adenosine triphosphate (ATP) level and results in the enhancement of endurance exercise capacity. Mechanistically, our chromatin immunoprecipitation (ChIP) analysis reveals that Baf155 modulates DNA-binding activity of HIF-1α to the promoters of its target genes. In addition, for this regulatory function, Baf155 requires a phospho-signal transducer and activator of transcription 3 (pSTAT3), which forms a coactivator complex with HIF-1α, to activate HIF-1α signaling. Our findings reveal the crucial role of Baf155 in energy metabolism of skeletal muscle and the interaction between Baf155 and hypoxia signaling.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Músculo Esquelético , Fatores de Transcrição , Animais , Camundongos , Regulação da Expressão Gênica , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Theranostics ; 12(14): 6380-6394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168637

RESUMO

Rationale: [18F]fluorodeoxyglucose-positron emission tomography ([18F]FDG-PET) has been widely used as an imaging technique to measure interscapular brown adipose tissue (iBAT) activity. However, it is challenging to obtain iBAT-specific images using [18F]FDG-PET because increased uptake of [18F]FDG is observed in tumors, muscle, and inflamed tissues. Uncoupling protein 1 (UCP1) in the mitochondrial membrane, a well-known molecular marker of BAT, has been proposed as a useful BAT imaging marker. Recently, the UCP1 ThermoMouse was developed as a reporter mouse for monitoring UCP1 expression and investigating BAT activation. In addition, Translocator protein-18 kDa (TSPO) located in the outer mitochondrial membrane is also overexpressed in BAT, suggesting that TSPO-targeting PET has potential for iBAT imaging. However, there are no studies monitoring BAT using TSPO-targeting PET probes in the UCP1 ThermoMouse. Moreover, the non-invasive Cerenkov luminescence imaging (CLI) using Cerenkov radiation from the PET probe has been proposed as an alternative option for PET as it is less expensive and user-friendly. Therefore, we selected [18F]fm-PBR28-d 2 as a TSPO-targeting PET probe for iBAT imaging to evaluate the usefulness of CLI in the UCP1 ThermoMouse. Methods: UCP1 ThermoMouse was used to monitor UCP1 expression. Western blotting and immunohistochemistry were performed to measure the level of protein expression. [18F]fm-PBR28-d 2 and [18F]FDG were used as radioactive probes for iBAT imaging. PET images were acquired with SimPET, and optical images were acquired with IVIS 100. Results: UCP1 ThermoMouse showed that UCP1 and TSPO expressions were correlated in iBAT. In both PET and CLI, the TSPO-targeting probe [18F]fm-PBR28-d 2 was superior to [18F]FDG for acquiring iBAT images. The high molar activity of the probe was essential for CLI and PET imaging. We tested the feasibility of TSPO-targeting probe under cold exposure by imaging with TSPO-PET/CLI. Both signals of iBAT were clearly increased after cold stimulation. Under prolonged isoflurane anesthesia, TSPO-targeting images showed higher signals from iBAT in the short-term than in long-term groups. Conclusion: We demonstrated that TSPO-PET/CLI reflected UCP1 expression in iBAT imaging better than [18F]FDG-PET/CLI under the various conditions. Considering convenience and cost, TSPO-CLI could be used as an alternative TSPO-PET technique for iBAT imaging.


Assuntos
Fluordesoxiglucose F18 , Isoflurano , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Animais , Fluordesoxiglucose F18/metabolismo , Isoflurano/metabolismo , Luminescência , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Proteína Desacopladora 1/metabolismo
3.
Development ; 145(14)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29950389

RESUMO

Mammary glands develop through primary ductal elongation and side branching to maximize the spatial area. Although primary ducts are generated by bifurcation of terminal end buds, the mechanism through which side branching occurs is still largely unclear. Here, we show that inhibitor of DNA-binding 2 (ID2) drives side branch formation through the differentiation of K6+ bipotent progenitor cells (BPs) into CD61+ luminal progenitor cells (LPs). Id2-null mice had side-branching defects, along with developmental blockage of the differentiation of K6+ BPs into CD61+ LPs. Notably, CD61+ LPs were found in budding and side branches, but not in terminal end buds. Hormone reconstitution studies using ovariectomized MMTV-hemagglutinin-nuclear localized sequence-tagged Id2 transgenic mice revealed that ID2 is a key mediator of progesterone, which drives luminal lineage differentiation and side branching. Our results suggest that CD61 is a marker of side branches and that ID2 regulates side branch formation by inducing luminal lineage commitment from K6+ BPs to CD61+ LPs.


Assuntos
Padronização Corporal , Linhagem da Célula , Proteína 2 Inibidora de Diferenciação/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/embriologia , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Núcleo Celular/metabolismo , Feminino , Deleção de Genes , Imageamento Tridimensional , Integrina beta3/metabolismo , Camundongos , Modelos Biológicos , Progesterona/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo
4.
Sensors (Basel) ; 17(9)2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914753

RESUMO

In this paper, we propose an optimal cooperative sensing technique for cognitive radio to maximize sensing performance based on energy detection. In most spectrum sensing research, many cooperation methods have been proposed to overcome the sensitivity of energy detection so that both primary and secondary users are better off in terms of spectral efficiency. However, without assigning a proper sensing threshold to each sensing node, cooperation may not be effective unless the received average primary user signal-to-noise ratio (SNR) is identical. We show that equal threshold energy detection severely degrades sensing performance when cooperative sensing nodes experience diverse average SNRs, and it is not unusual for even single-node sensing to be better than cooperative sensing. To this end, based on the Neyman-Pearson criterion we formulate an optimization problem to maximize sensing performance by using optimized thresholds. Since this is a non-convex optimization problem, we provide a condition that convexifies the problem and thus serves as a sufficient optimality condition. We find that, perhaps surprisingly, in all practical cases one may consider this condition satisfied, and thus optimal sensing performance can be obtained. Through extensive simulations, we demonstrate that the proposed technique achieves a globally optimal solution, i.e., it maximizes the probability of detection under practical operating parameters such as the target probability of false alarm, different SNRs, and the number of cooperative sensing nodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA