Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(2): 606-620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169654

RESUMO

Dysregulation of liver sinusoidal endothelial cell (LSEC) differentiation and function has been reported in alcohol-associated liver disease (ALD). Impaired nitric oxide (NO) production stimulates LSEC capillarization and dysfunction; however, the mechanism underlying NO production remains unclear. Here, we investigated the role of thioredoxin-interacting protein (TXNIP), an important regulator of redox homeostasis, in endothelial cell NO production and its subsequent effects on ALD progression. We found that hepatic TXNIP expression was upregulated in patients with ALD and in ethanol diet-fed mice with high expression in LSECs. Endothelial cell-specific Txnip deficiency (TxnipΔEC) in mice exacerbated alcohol-induced liver injury, inflammation, fibrosis, and hepatocellular carcinoma development. Deletion of Txnip in LSECs led to sinusoidal capillarization, downregulation of NO production, and increased release of proinflammatory cytokines and adhesion molecules, whereas TXNIP overexpression had the opposite effects. Mechanistically, TXNIP interacted with transforming growth factor ß-activated kinase 1 (TAK1) and subsequently suppressed the TAK1 pathway. Inhibition of TAK1 activation restored NO production and decreased the levels of proinflammatory cytokines, thereby, blocking liver injury and inflammation in TxnipΔEC mice. Our findings indicate that upregulated TXNIP expression in LSECs serves a protective role in ameliorating ALD. Enhancing TXNIP expression could, therefore, be a potential therapeutic approach for ALD.


Assuntos
Hepatopatias Alcoólicas , Óxido Nítrico , Animais , Humanos , Camundongos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Óxido Nítrico/metabolismo
2.
Int Urol Nephrol ; 55(1): 17-28, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36107291

RESUMO

PURPOSE: Benign prostatic hyperplasia (BPH) is a urogenital disorder that affects approximately 85% of males who are over 50 years of age. Hydrocotyle ramiflora (HR), belonging to Apiaceae family, is used to treat urinary system diseases such as urine retention in traditional Chinese herbal medicine. In this study, we evaluated the effects of HR in the BPH animal model. METHODS: We induced BPH in rats via subcutaneous (sc) injections of testosterone propionate (TP, 3 mg/kg). Rats were also administered HR (150 mg/kg), finasteride (10 mg/kg), or vehicle via oral gavage. After induction, prostate glands were collected, weighed, and processed for further analysis, including histopathological examination and immunohistochemistry. In addition, the mRNA expression of inflammatory cytokines in prostatic tissues was determined by quantitative real-time PCR (qRT-PCR). The protein expression of pro-apoptotic markers was examined using western blotting. RESULTS: HR treatment significantly reduced the prostate weight, epithelial thickness, and proliferating cell nuclear antigen (PCNA) expression, with the levels of cleaved caspase-3 and Bcl-2-associated X (Bax) protein considerably increased compared to BPH group. HR also decreased inflammatory cell infiltration and pro-inflammatory cytokine levels compared with BPH group. Furthermore, the expression of phosphor-nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were reduced by HR treatment. CONCLUSION: These results indicate that HR suppresses the development of BPH associated with anti-proliferative, pro-apoptotic, and anti-inflammatory effects, suggesting it is a potential alternative therapeutic agent for BPH.


Assuntos
Centella , Hiperplasia Prostática , Masculino , Humanos , Ratos , Animais , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Testosterona/uso terapêutico , Ratos Sprague-Dawley , Extratos Vegetais/efeitos adversos
3.
Pharm Biol ; 60(1): 2040-2048, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36267048

RESUMO

CONTEXT: Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with respiratory symptoms and narrowing of airways. Gyeji-tang (GJT) is a traditional Asian medicine that has been used to relieve early-stage cold symptoms, headache, and chills. OBJECTIVE: We examined the effect and potential molecular action mechanism of GJT in a mouse model of COPD induced by cigarette smoke (CS) plus lipopolysaccharide (LPS). MATERIALS AND METHODS: COPD was induced in C57BL/6J mice via daily exposure to CS for 1 h for 8 weeks and intranasal administration of LPS on weeks 1, 3, 5, and 7. GJT (100 or 200 mg/kg) or roflumilast (5 mg/kg) was administrated daily for the final 4 weeks of COPD induction. RESULTS: Administration of GJT significantly suppressed the CS/LPS-induced increases in: the numbers of total cells and macrophages in bronchoalveolar lavage fluid; the expression levels of tumour necrosis factor-α, interleukin (IL)-6, IL-1ß, and IL-8; the activities (phosphorylation) of nuclear factor kappa B and signal transducer and activator of transcription 3; and the expression levels of the structural remodelling markers, transforming growth factor beta, matrix metallopeptidase (MMP)-7, and MMP-9. DISCUSSION AND CONCLUSIONS: These results demonstrate that GJT prevents the lung inflammation and airway remodelling induced by CS plus LPS exposure in mice, suggesting that GJT may have therapeutic potential for the treatment of COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição STAT3/metabolismo , NF-kappa B/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Interleucina-8/uso terapêutico , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Pulmão , Nicotiana , Modelos Animais de Doenças , Anti-Inflamatórios/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo
4.
Res Rep Urol ; 14: 313-326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187165

RESUMO

Introduction: Benign prostatic hyperplasia (BPH) is a non-neoplastic proliferative disease of the prostate. Eriochloa villosa (EV) reportedly possesses various pharmacological activities, including anti-lipase activity and modulation of various antioxidative enzymes. In this study, we investigate the therapeutic potential of EV against BPH in a testosterone-induced BPH rat model. Methods: Rats were subjected to a daily subcutaneous injection of testosterone (3 mg kg-1) for 4 weeks to induce BPH. Along with testosterone, rats in the treatment group were administered finasteride (10 mg kg-1) or EV (150 mg kg-1) via oral gavage. Prostatic cancer (LNCaP) cell line was used to examine the effect of EV. Results: Finasteride and EV significantly decrease the relative prostate weight, serum levels of dihydrotestosterone and testosterone, and prostate epithelial thickness. Testosterone injection induced prostatic hyperplasia and proliferating cell nuclear antigen expression; however, EV treatment significantly attenuated these effects. Moreover, finasteride- and EV-treated rats exhibit an increase in the number of TUNEL-positive cells and reduced Bcl-2 expression in the prostate tissues compared with the testosterone-treated animals. Furthermore, EV suppresses inflammatory cytokines, including interleukin (IL)-6 and IL-8, in the prostate tissues. Meanwhile, the expression of inflammatory mediator cyclooxygenase-2 is consistently upregulated in testosterone-treated rats, whereas EV treatment significantly reverses this effect. Notably, EV treatment suppresses malondialdehyde (MDA) levels and upregulates testosterone-induced catalase (CAT) expression. In addition, EV suppresses expression of androgen receptor (AR) and prostate-specific antigen (PSA) induced by testosterone in LNCaP cells. Conclusion: The present study results suggest that EV regulates prostatic proliferation, apoptosis, response to inflammation, and oxidative stress in the BPH rat model, and may, therefore, serve as a useful therapeutic agent for BPH.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35035511

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) refers to a lung disorder associated with symptoms of dyspnea, cough, and sputum production. Traditionally, Yijin-tang (YJT), a mixture of Pinellia ternate, Poria cocos, ginger, Chinese liquorice, and tangerine peel, has been prescribed for the treatment of respiratory system diseases caused by dampness phlegm. This experiment investigated the therapeutic effect of YJT in a mouse model of cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD. METHODS: COPD was induced by exposing mice to CS for 1 hour per day for 8 weeks, with intranasal delivery of LPS on weeks 1, 3, 5, and 7. YJT was administered at doses of 100 and 200 mg/kg 1 hour before CS exposure for the last 4 weeks. RESULTS: YJT significantly suppressed CS- and LPS-induced increases in inflammatory cell counts and reduced interleukin-1 beta (IL-1ß), IL-6, tumor necrosis factor-alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) levels in bronchoalveolar lavage fluid (BALF) and lung tissue. In addition, YJT not only decreased airway wall thickness, average alveolar intercept, and lung fibrosis, but it also suppressed the expression of matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-B (TGF-ß) and collagen deposition. Moreover, YJT suppressed phosphorylation of nuclear factor-kappa B (NF-κB) as well as expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). CONCLUSION: Collectively, our findings show that YJT attenuates respiratory inflammation and airway remodeling caused by CS and LPS exposure; therefore, therapeutic applications in COPD can be considered.

6.
BMC Complement Med Ther ; 21(1): 281, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784929

RESUMO

BACKGROUND: Palmijihwanghwan (PJH) is a traditional medicine and eight constituents derived from PJH possess anti-inflammatory activities. However, the scientific evidence for its potential as a therapeutic agent for inflammatory lung disease has not yet been studied. In this study, we examined the protective effect of PJH in a mouse model of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke (CS) with lipopolysaccharide (LPS). METHODS: Mice received CS exposure for 8 weeks and intranasal instillation of LPS on weeks 1, 3, 5 and 7. PJH (100 and 200 mg/kg) was administrated daily 1 h before CS treatment for the last 4 weeks. RESULTS: Compared with CS plus LPS-exposed mice, mice in the PJH-treated group showed significantly decreased inflammatory cells count and reduced inflammatory cytokines including interleukin-1 beta (IL-1ß), IL-6 and tumor necrosis factor alpha (TNF-α) levels in broncho-alveolar lavage fluid (BALF) and lung tissue. PJH also suppressed the phosphorylation of nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase1/2 (ERK1/2) caused by CS plus LPS exposure. Furthermore, CS plus LPS induced increases in matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-ß (TGF-ß) expression and collagen deposition that were inhibited in PJH-treated mice. CONCLUSIONS: This study demonstrates that PJH prevents respiratory inflammation and airway remodeling caused by CS with LPS exposure suggesting potential therapy for the treatment of COPD.


Assuntos
Anti-Inflamatórios/farmacologia , Medicina Tradicional Chinesa/métodos , Extratos Vegetais/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Animais , Modelos Animais de Doenças , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/etiologia , Poluição por Fumaça de Tabaco/efeitos adversos
7.
Pflugers Arch ; 457(2): 281-91, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18542991

RESUMO

The effects of luminal ATP between rabbit pulmonary (PAs) and coronary arteries (CAs) were compared to understand the role of purinoceptors in the regulation of pulmonary arterial pressure (PAP) under hypoxia. Diameters of vessels were video analyzed under luminal perfusion. ATP-induced membrane currents and intracellular Ca(2+) signals ([Ca(2+)](i)) were compared in pulmonary (PASMCs) and coronary myocytes (CASMCs) using patch clamp and spectrofluorimetry. PAP was measured in perfused lungs under ventilation. Luminal ATP induced constriction of rabbit PAs in the presence of endothelium. In contrast, CAs showed dilating responses to luminal ATP even in the absence of endothelium. In PASMCs, both P2X-mediated inward current and P2Y-mediated store Ca(2+) release were consistently observed. In contrast, CASMCs showed neither P2X nor P2Y responses. In the perfused lungs, hypoxia-induced PAP increase was decreased by suramin, a purinergic antagonist. A luminal application of alpha,beta-meATP largely increased PAP, whereas UTP decreased PAP. The combined application of P2X- and P2Y-selective agonists (alpha,beta-meATP and UTP) increased PAP. However, the perfusion of ATP alone decreased PAP, and the ATP-induced PAP decrease was affected neither by adenosine receptor antagonist nor by nitric oxide synthase inhibitor. In summary, although the luminal ATP constricts isolated PAs and suramin attenuated the HPV of perfused lungs, the bimodal responses of PAP to purinergic agonists indicate that the luminal ATP regulates pulmonary circulation via complex signaling interactions in situ.


Assuntos
Trifosfato de Adenosina/metabolismo , Pressão Sanguínea , Circulação Coronária , Vasos Coronários/metabolismo , Artéria Pulmonar/metabolismo , Circulação Pulmonar , Receptores Purinérgicos P2/metabolismo , Vasoconstrição , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Sinalização do Cálcio , Circulação Coronária/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Técnicas In Vitro , Masculino , Potenciais da Membrana , Músculo Liso Vascular/metabolismo , Técnicas de Patch-Clamp , Perfusão , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar/efeitos dos fármacos , Coelhos , Receptores Purinérgicos P2/efeitos dos fármacos , Respiração Artificial , Espectrometria de Fluorescência , Suramina/farmacologia , Uridina Trifosfato/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasodilatação , Gravação em Vídeo
8.
Prog Biophys Mol Biol ; 96(1-3): 399-420, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17915297

RESUMO

In vascular smooth muscle cells, it has been suggested that membrane potential is an important component that initiates contraction. We developed a mathematical model to elucidate the quantitative contributions of major ion currents [a voltage-gated L-type Ca2+ current (ICaL), a voltage-sensitive K+ current (IKV), a Ca2+-activated K+ current (IKCa) and a nonselective cation current (INSC)] to membrane potential. In order to typify the diverse nature of pulmonary artery smooth muscle cells (PASMCs), we introduced parameters that are not fixed (variable parameters). The population of cells with different parameters was constructed and the cells that have the electrophysiological properties of PASMCs were selected. The contributions of each membrane current were investigated by sensitivity analysis and modification of the current parameters. Consequently, IKV and INSC were found to be the most important currents that affect the membrane potential. The occurrence of depolarisation in hypoxic pulmonary vasoconstriction (HPV) was also examined. In hypoxia, IKV and IKCa were reduced, but the consequent depolarisation in simulation was not enough to initiate contractions. If we add an increase of INSC (2.5-fold), the calculated membrane potential was enough to induce contraction. From the results, we conclude that the balance of various ion channel activities determines the resting membrane potential of PASMCs and our model was successful in explaining the depolarisation in HPV. Therefore, this model can be a powerful tool to investigate the various electrical properties of PASMCs in both normal and pathological conditions.


Assuntos
Eletrofisiologia Cardíaca , Hipóxia/metabolismo , Modelos Cardiovasculares , Miócitos de Músculo Liso/fisiologia , Artéria Pulmonar/fisiologia , Vasoconstrição/fisiologia , Animais , Humanos , Artéria Pulmonar/citologia , Coelhos
9.
Cardiovasc Res ; 76(2): 224-35, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17658500

RESUMO

OBJECTIVE: The mechanosensitive nonselective cation channel (NSC(MS)) and endothelin-1 (ET-1) play critical roles in the regulation of vascular tone. This study was undertaken to investigate the effect of ET-1 on NSC(MS) and on the myogenic response of arteries. METHODS: Cell-attached patch-clamp techniques were applied to rabbit pulmonary and cerebral arterial smooth muscle cells using a 140 mM CsCl pipette and bath solutions (Ca(2+)-free, 1 mM EGTA). Myogenic responses were determined by video analysis of pressurized arteries. RESULTS: The application of negative pressures through the pipette activated NSC(MS), and this was augmented by bath application of ET-1 (1 pM-30 nM). ET-1 lowered the lowest pressure required for NSC(MS) activation. NSC(MS) facilitation by ET-1 was prevented by BQ-123 (1 microM, an ET(A) antagonist) but not by BQ-788 (1 microM, an ET(B) antagonist). Phorbol 12-myristate 13-acetate (PMA, 100 nM), a protein kinase C activator, also increased the activity of NSC(MS). ET-1- or PMA-induced facilitation of NSC(MS) was abolished by GF109203X (10 microM), a protein kinase C inhibitor. Video analysis of pressurized cerebral artery showed inhibition of the myogenic response by the NSC(MS) channel blockers GsMTx-4 (5 microM) and DIDS (3-100 microM). Treatment with ET-1 (10 pM) augmented the myogenic response and this was inhibited by DIDS (30 microM). CONCLUSION: Stimulation of ET-1 receptor (ET(A)) facilitates NSC(MS) via a protein kinase C-dependent signaling pathway in rabbit arterial myocytes. Our findings suggest that NSC(MS) play a role in the myogenic response and its augmentation by ET-1.


Assuntos
Endotelina-1/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteína Quinase C/fisiologia , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Animais , Cálcio/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Peptídeos/farmacologia , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiologia , Coelhos , Venenos de Aranha/farmacologia , Estresse Mecânico , Canais de Cátion TRPC/efeitos dos fármacos , Canais de Cátion TRPC/fisiologia , Canal de Cátion TRPC6 , Canais de Cátion TRPM/efeitos dos fármacos , Canais de Cátion TRPM/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA