Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(7): eadj7481, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354249

RESUMO

Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.


Assuntos
Aorta , Atividade Motora , Animais , Camundongos , Aorta/metabolismo , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
2.
Circulation ; 149(15): 1183-1201, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38099436

RESUMO

BACKGROUND: Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow, and stable flow (s-flow) protects against atherosclerosis by incompletely understood mechanisms. METHODS: Our single-cell RNA-sequencing data using the mouse partial carotid ligation model was reanalyzed, which identified Heart-of-glass 1 (HEG1) as an s-flow-induced gene. HEG1 expression was studied by immunostaining, quantitive polymerase chain reaction, hybridization chain reaction, and Western blot in mouse arteries, human aortic endothelial cells (HAECs), and human coronary arteries. A small interfering RNA-mediated knockdown of HEG1 was used to study its function and signaling mechanisms in HAECs under various flow conditions using a cone-and-plate shear device. We generated endothelial-targeted, tamoxifen-inducible HEG1 knockout (HEG1iECKO) mice. To determine the role of HEG1 in atherosclerosis, HEG1iECKO and littermate-control mice were injected with an adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9] and fed a Western diet to induce hypercholesterolemia either for 2 weeks with partial carotid ligation or 2 months without the surgery. RESULTS: S-flow induced HEG1 expression at the mRNA and protein levels in vivo and in vitro. S-flow stimulated HEG1 protein translocation to the downstream side of HAECs and release into the media, followed by increased messenger RNA and protein expression. HEG1 knockdown prevented s-flow-induced endothelial responses, including monocyte adhesion, permeability, and migration. Mechanistically, HEG1 knockdown prevented s-flow-induced KLF2/4 (Kruppel-like factor 2/4) expression by regulating its intracellular binding partner KRIT1 (Krev interaction trapped protein 1) and the MEKK3-MEK5-ERK5-MEF2 pathway in HAECs. Compared with littermate controls, HEG1iECKO mice exposed to hypercholesterolemia for 2 weeks and partial carotid ligation developed advanced atherosclerotic plaques, featuring increased necrotic core area, thin-capped fibroatheroma, inflammation, and intraplaque hemorrhage. In a conventional Western diet model for 2 months, HEG1iECKO mice also showed an exacerbated atherosclerosis development in the arterial tree in both sexes and the aortic sinus in males but not in females. Moreover, endothelial HEG1 expression was reduced in human coronary arteries with advanced atherosclerotic plaques. CONCLUSIONS: Our findings indicate that HEG1 is a novel mediator of atheroprotective endothelial responses to flow and a potential therapeutic target.


Assuntos
Aterosclerose , Hipercolesterolemia , Placa Aterosclerótica , Masculino , Feminino , Humanos , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Pró-Proteína Convertase 9/metabolismo , Células Endoteliais/metabolismo , Hipercolesterolemia/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Membrana/metabolismo
3.
ACS Chem Biol ; 18(11): 2349-2367, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37910400

RESUMO

Therapeutic nucleic acids represent a powerful class of drug molecules to control gene expression and protein synthesis. A major challenge in this field is that soluble oligonucleotides have limited serum stability, and the majority of nucleic acids that enter the cells are trapped within endosomes. Delivery efficiency can be improved using lipid scaffolds. One such example is the nanodisc (ND), a self-assembled nanostructure composed of phospholipids and peptides and modeled after high density lipoproteins (HDLs). Herein, we describe the development of the nanodiscoidal nucleic acid (NNA) which is a ND covalently modified with nucleic acids on the top and bottom lipid faces as well as the lateral peptide belt. The 13 nm ND was doped with thiolated phospholipids and thiol-containing peptides and coupled in a one-pot reaction with oligonucleotides to achieve ∼30 DNA/NNA nucleic acid density. NNAs showed superior nuclease resistance and enhanced cellular uptake that was mediated through the scavenger receptor B1. Time-dependent Förster resonance energy transfer (FRET) analysis of internalized NNA confirmed that NNAs display increased stability. NNAs modified with clinically validated antisense oligonucleotides (ASOs) that target hypoxia inducible factor 1-α (HIF-1-α) mRNA showed enhanced activity compared with that of the soluble DNA across multiple cell lines as well as a 3D cancer spheroid model. Lastly, in vivo experiments show that ASO-modified NNAs are primarily localized into livers and kidneys, and NNAs were potent in downregulating HIF-1-α using 5-fold lower doses than previously reported. Collectively, our results highlight the therapeutic potential for NNAs.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos/química , Oligonucleotídeos/química , DNA/metabolismo , Lipídeos , Peptídeos
4.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205360

RESUMO

Exercise modulates vascular plasticity in multiple organ systems; however, the metabolomic transducers underlying exercise and vascular protection in the disturbed flow-prone vasculature remain under-investigated. We simulated exercise-augmented pulsatile shear stress (PSS) to mitigate flow recirculation in the lesser curvature of the aortic arch. When human aortic endothelial cells (HAECs) were subjected to PSS ( τ ave = 50 dyne·cm -2 , ∂τ/∂t = 71 dyne·cm -2 ·s -1 , 1 Hz), untargeted metabolomic analysis revealed that Stearoyl-CoA Desaturase (SCD1) in the endoplasmic reticulum (ER) catalyzed the fatty acid metabolite, oleic acid (OA), to mitigate inflammatory mediators. Following 24 hours of exercise, wild-type C57BL/6J mice developed elevated SCD1-catalyzed lipid metabolites in the plasma, including OA and palmitoleic acid (PA). Exercise over a 2-week period increased endothelial SCD1 in the ER. Exercise further modulated the time-averaged wall shear stress (TAWSS or τ ave) and oscillatory shear index (OSI ave ), upregulated Scd1 and attenuated VCAM1 expression in the disturbed flow-prone aortic arch in Ldlr -/- mice on high-fat diet but not in Ldlr -/- Scd1 EC-/- mice. Scd1 overexpression via recombinant adenovirus also mitigated ER stress. Single cell transcriptomic analysis of the mouse aorta revealed interconnection of Scd1 with mechanosensitive genes, namely Irs2 , Acox1 and Adipor2 that modulate lipid metabolism pathways. Taken together, exercise modulates PSS ( τ ave and OSI ave ) to activate SCD1 as a metabolomic transducer to ameliorate inflammation in the disturbed flow-prone vasculature.

5.
JCI Insight ; 3(13)2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29997298

RESUMO

Hemodynamic shear force has been implicated as modulating Notch signaling-mediated cardiac trabeculation. Whether the spatiotemporal variations in wall shear stress (WSS) coordinate the initiation of trabeculation to influence ventricular contractile function remains unknown. Using light-sheet fluorescent microscopy, we reconstructed the 4D moving domain and applied computational fluid dynamics to quantify 4D WSS along the trabecular ridges and in the groves. In WT zebrafish, pulsatile shear stress developed along the trabecular ridges, with prominent endocardial Notch activity at 3 days after fertilization (dpf), and oscillatory shear stress developed in the trabecular grooves, with epicardial Notch activity at 4 dpf. Genetic manipulations were performed to reduce hematopoiesis and inhibit atrial contraction to lower WSS in synchrony with attenuation of oscillatory shear index (OSI) during ventricular development. γ-Secretase inhibitor of Notch intracellular domain (NICD) abrogated endocardial and epicardial Notch activity. Rescue with NICD mRNA restored Notch activity sequentially from the endocardium to trabecular grooves, which was corroborated by observed Notch-mediated cardiomyocyte proliferations on WT zebrafish trabeculae. We also demonstrated in vitro that a high OSI value correlated with upregulated endothelial Notch-related mRNA expression. In silico computation of energy dissipation further supports the role of trabeculation to preserve ventricular structure and contractile function. Thus, spatiotemporal variations in WSS coordinate trabecular organization for ventricular contractile function.


Assuntos
Ventrículos do Coração/embriologia , Ventrículos do Coração/crescimento & desenvolvimento , Hemodinâmica , Organogênese , Algoritmos , Animais , Animais Geneticamente Modificados , Proliferação de Células , Desenvolvimento Embrionário , Fator de Transcrição GATA1 , Regulação da Expressão Gênica , Genes erbB-2/genética , Genes erbB-2/fisiologia , Insuficiência Cardíaca , Ventrículos do Coração/diagnóstico por imagem , Simulação de Dinâmica Molecular , Miócitos Cardíacos/fisiologia , RNA Mensageiro/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Transdução de Sinais , Estresse Mecânico , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra
6.
Antioxid Redox Signal ; 28(13): 1209-1223, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037123

RESUMO

AIMS: Redox active ultrafine particles (UFP, d < 0.2 µm) promote vascular oxidative stress and atherosclerosis. Notch signaling is intimately involved in vascular homeostasis, in which forkhead box O1 (FOXO1) acts as a co-activator of the Notch activation complex. We elucidated the importance of FOXO1/Notch transcriptional activation complex to restore vascular regeneration after UFP exposure. RESULTS: In a zebrafish model of tail injury and repair, transgenic Tg(fli1:GFP) embryos developed vascular regeneration at 3 days post amputation (dpa), whereas UFP exposure impaired regeneration (p < 0.05, n = 20 for control, n = 28 for UFP). UFP dose dependently reduced Notch reporter activity and Notch signaling-related genes (Dll4, JAG1, JAG2, Notch1b, Hey2, Hes1; p < 0.05, n = 3). In the transgenic Tg(tp1:GFP; flk1:mCherry) embryos, UFP attenuated endothelial Notch activity at the amputation site (p < 0.05 vs. wild type [WT], n = 20). A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) inhibitor or dominant negative (DN)-Notch1b messenger RNA (mRNA) disrupted the vascular network, whereas notch intracellular cytoplasmic domain (NICD) mRNA restored the vascular network (p < 0.05 vs. WT, n = 20). UFP reduced FOXO1 expression, but not Master-mind like 1 (MAML1) or NICD (p < 0.05, n = 3). Immunoprecipitation and immunofluorescence demonstrated that UFP attenuated FOXO1-mediated NICD pull-down and FOXO1/NICD co-localization, respectively (p < 0.05, n = 3). Although FOXO1 morpholino oligonucleotides (MOs) attenuated Notch activity, FOXO1 mRNA reversed UFP-mediated reduction in Notch activity to restore vascular regeneration and blood flow (p < 0.05 vs. WT, n = 5). Innovation and Conclusion: Our findings indicate the importance of the FOXO1/Notch activation complex to restore vascular regeneration after exposure to the redox active UFP. Antioxid. Redox Signal. 28, 1209-1223.


Assuntos
Células Endoteliais/efeitos dos fármacos , Proteína Forkhead Box O1/metabolismo , Material Particulado/farmacologia , Receptores Notch/metabolismo , Regeneração/efeitos dos fármacos , Proteínas de Peixe-Zebra/metabolismo , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Oxirredução , Material Particulado/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra
7.
Sci Rep ; 7: 42906, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211537

RESUMO

Ambient particulate matter (PM) exposure is associated with atherosclerosis and inflammatory bowel disease. Ultrafine particles (UFP, dp < 0.1-0.2 µm) are redox active components of PM. We hypothesized that orally ingested UFP promoted atherogenic lipid metabolites in both the intestine and plasma via altered gut microbiota composition. Low density lipoprotein receptor-null (Ldlr-/-) mice on a high-fat diet were orally administered with vehicle control or UFP (40 µg/mouse/day) for 3 days a week. After 10 weeks, UFP ingested mice developed macrophage and neutrophil infiltration in the intestinal villi, accompanied by elevated cholesterol but reduced coprostanol levels in the cecum, as well as elevated atherogenic lysophosphatidylcholine (LPC 18:1) and lysophosphatidic acids (LPAs) in the intestine and plasma. At the phylum level, Principle Component Analysis revealed significant segregation of microbiota compositions which was validated by Beta diversity analysis. UFP-exposed mice developed increased abundance in Verrocomicrobia but decreased Actinobacteria, Cyanobacteria, and Firmicutes as well as a reduced diversity in microbiome. Spearman's analysis negatively correlated Actinobacteria with cecal cholesterol, intestinal and plasma LPC18:1, and Firmicutes and Cyanobacteria with plasma LPC 18:1. Thus, ultrafine particles ingestion alters gut microbiota composition, accompanied by increased atherogenic lipid metabolites. These findings implicate the gut-vascular axis in a atherosclerosis model.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Material Particulado/farmacologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Ceco/metabolismo , Colestanol/metabolismo , Colesterol/metabolismo , Citocinas/sangue , Dieta Hiperlipídica , Lisofosfatidilcolinas/análise , Lisofosfatidilcolinas/sangue , Lisofosfolipídeos/análise , Lisofosfolipídeos/sangue , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Material Particulado/química , Análise de Componente Principal , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA