RESUMO
Systemic lupus erythematosus (SLE) is a chronic inflammatory disease caused by autoantibodies. Serum samples from patients with SLE (n = 10) were compared with those from normal controls (NCs, n = 5) using 21K protein chip analysis to identify a biomarker for SLE, revealing 63 SLE-specific autoantibodies. The anti-chaperonin-containing t-complex polypeptide-1 (TCP1) antibody exhibited higher expression in patients with SLE than in NCs. To validate the specificity of the anti-TCP1 antibody in SLE, dot blot analysis was conducted using sera from patients with SLE (n = 100), rheumatoid arthritis (RA; n = 25), Behçet's disease (BD; n = 28), and systemic sclerosis (SSc; n = 30) and NCs (n = 50). The results confirmed the detection of anti-TCP1 antibodies in 79 of 100 patients with SLE, with substantially elevated expression compared to both NCs and patients with other autoimmune diseases. We performed an enzyme-linked immunosorbent assay to determine the relative amounts of anti-TCP1 antibodies; markedly elevated anti-TCP1 antibody levels were detected in the sera of patients with SLE (50.1 ± 17.3 arbitrary unit (AU), n = 251) compared to those in NCs (33.9 ± 9.3 AU), RA (35 ± 8.7 AU), BD (37.5 ± 11.6 AU), and SSc (43 ± 11.9 AU). These data suggest that the anti-TCP1 antibody is a potential diagnostic biomarker for SLE.
Assuntos
Autoanticorpos , Biomarcadores , Lúpus Eritematoso Sistêmico , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/sangue , Biomarcadores/sangue , Autoanticorpos/sangue , Autoanticorpos/imunologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Ensaio de Imunoadsorção Enzimática/métodos , Estudos de Casos e ControlesRESUMO
Objective: Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by the production of autoantibodies and high cholesterol levels. HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase inhibitors have exhibited anti-inflammatory effects in several clinical trials. We conducted this study to evaluate the effect of rosuvastatin on inflammatory responses in lupus-prone mice. Methods: MRL/lpr mice were intraperitoneally injected with rosuvastatin (10 mg/kg, n=4) or vehicle (2% dimethyl sulfoxide, n=4) five times a week from 13 to 17 weeks of age. The serum levels of low-density lipoprotein (LDL) cholesterol and autoantibodies were measured, as well as the urine levels of albumin. Renal tissues were stained for histopathological analysis. Concentrations of key inflammatory cytokines were measured in the serum, and messenger RNA (mRNA) levels in target organs (kidney, spleen, and lymph nodes) were evaluated. Results: Rosuvastatin treatment significantly decreased serum LDL cholesterol concentration in MRL/lpr mice. However, the clinical manifestations and autoantibody titres did not improve with rosuvastatin treatment. In addition, serum inflammatory cytokines and proteinuria did not change. Histopathological analysis of the kidneys revealed no improvement. When assessing the expression of mRNA, treatment with rosuvastatin decreased tumor necrosis alpha and interleukin-17 concentration in spleen and kidney tissue and in the kidneys and lymph nodes of MRL/lpr mice, respectively. Conclusion: Although it can decrease inflammatory cytokines in the lymphoid organs and kidneys of MRL/lpr mice, treatment with rosuvastatin is insufficient to alleviate SLE.
RESUMO
Objectives: This study aimed to elucidate the potential of serum, urine, and saliva S100 calcium-binding protein A8 protein (S100A8) levels as biomarkers for systemic lupus erythematosus (SLE). Methods: Serum, urine, and saliva samples were obtained from 249 patients with SLE from the Ajou lupus cohort and 52 age- and sex-matched healthy controls (HCs). The concentrations of S100A8 were quantified using an ELISA, and a receiver operating characteristic curve was used to analyze whether they may be used as biomarkers for diagnosing SLE. Results: Among 249 SLE patients included in our study, the mean SLE disease activity index (SLEDAI)-2K was 7.16 ± 5.61, and the number of patients with lupus flare was 11. Patients with SLE showed a 2.7-fold increase in serum S100A8 levels compared with that in HCs (1,890.6 vs. 709 pg/ml, p < 0.001). In urine and saliva, the average S100A8 levels were significantly higher in patients with SLE compared with those in HCs (urine, 2,029.4 vs. 1,096.7 pg/ml, p = 0.001; saliva, 290,496.3 vs. 47,742 pg/ml, p < 0.001). For SLE diagnosis, the area under the receiver operating characteristic curve was 0.831 for serum S100A8 (95% CI, 0.765-0.897), 0.751 for urine S100A8 (95% CI, 0.648-0.854), and 0.729 for salivary S100A8 (95% CI, 0.646-0.812). Pearson's correlation analysis showed that S100A8 in serum, urine, and saliva was significantly associated with the SLEDAI (r = 0.267, p < 0.001; r = 0.274, p < 0.001; and r = 0.629, p < 0.001, respectively). Among the clinical manifestations, nephritis was the most influential factor related to SLE in the concentration of S100A8 in serum, urine, and saliva. Conclusion: This is the first study to show that the expression of S100A8 in serum, urine, and saliva is significantly higher in patients with SLE than in HCs and is associated with disease activity markers. Therefore, we suggest that S100A8 protein could be a potential biomarker for SLE.
Assuntos
Calgranulina A , Lúpus Eritematoso Sistêmico , Biomarcadores , Humanos , Saliva , Exacerbação dos SintomasRESUMO
Toll-like receptors (TLRs) play a major role in the innate immune system. Several studies have shown the regulatory effects of TLR-mediated pathways on immune and inflammatory diseases. Dysregulated functions of TLRs within the endosomal compartment, including TLR7/9 trafficking, may cause systemic lupus erythematosus (SLE). TLR signaling pathways are fine-tuned by Toll/interleukin-1 receptor (TIR) domain-containing adapters, leading to interferon (IFN)-α production. This study describes a TLR inhibitor peptide 1 (TIP1) that primarily suppresses the downstream signaling mediated by TIR domain-containing adapters in an animal model of lupus and patients with SLE. The expression of most downstream proteins of the TLR7/9/myeloid differentiation factor 88 (MyD88)/IFN regulatory factor 7 signaling was downregulated in major tissues such as the kidney, spleen, and lymph nodes of treated mice. Furthermore, the pathological analysis of the kidney tissue confirmed that TIP1 could improve inflammation in MRL/lpr mice. TIP1 treatment downregulated many downstream proteins associated with TLR signaling, such as MyD88, interleukin-1 receptor-associated kinase, tumor necrosis factor receptor-associated factor 6, and IFN-α, in the peripheral blood mononuclear cells of patients with SLE. In conclusion, our data suggest that TIP1 can serve as a potential candidate for the treatment of SLE.
Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação/prevenção & controle , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Receptores Toll-Like/antagonistas & inibidores , Animais , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos MRL lpr , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismoRESUMO
We aimed to characterize the salivary protein components and identify biomarkers in patients with systemic lupus erythematosus (SLE). A proteomic analysis using two-dimensional gel electrophoresis and mass spectrometry was performed to determine the alterations of salivary proteins between patients with SLE and healthy controls, and the concentrations of the candidate proteins were measured through Western blot analysis and the enzyme-linked immunosorbent assay. The 10 differentially expressed protein spots were immunoglobulin gamma-3 chain C region (IGHG3), immunoglobulin alpha-1 chain C region, protein S100A8, lactoferrin, leukemia-associated protein 7, and 8-oxoguanine DNA glycosylase. The patients with SLE exhibited enhanced salivary IGHG3 (3.9 ± 2.15 pg/mL) and lactoferrin (4.7 ± 1.8 pg/mL) levels compared to patients with rheumatoid arthritis (1.8 ± 1.01 pg/mL and 3.2 ± 1.6 pg/mL, respectively; p < 0.001 for both) or healthy controls (2.2 ± 1.64 pg/mL and 2.2 ± 1.7 pg/mL, respectively; p < 0.001 for both). The salivary IGHG3 levels correlated with the erythrocyte sedimentation rate (r = 0.26, p = 0.01), anti-double-stranded DNA (dsDNA) antibody levels (r = 0.25, p = 0.01), and nephritis (r = 0.28, p = 0.01). The proteomic analysis revealed that the salivary IGHG3 levels were associated with SLE and lupus disease activity, suggesting that salivary IGHG3 may be a promising noninvasive biomarker for SLE.
Assuntos
Imunoglobulina G/análise , Cadeias gama de Imunoglobulina/análise , Lúpus Eritematoso Sistêmico/diagnóstico , Saliva/química , Adulto , Biomarcadores/análise , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: TLRs are some of the actively pursued drug-targets in immune disorders. Owing to a recent surge in the cognizance of TLR structural biology and signalling pathways, numerous therapeutic modulators, ranging from low-molecular-weight organic compounds to polypeptides and nucleic acid agents have been developed. METHODS: A penetratin-conjugated small peptide (TIP3), derived from the core ß-sheet of TIRAP, was evaluated in vitro by monitoring the TLR-mediated cytokine induction and quantifying the protein expression using western blot. The therapeutic potential of TIP3 was further evaluated in TLR-dependent in vivo disease models. FINDINGS: TIP3 blocks the TLR4-mediated cytokine production through both the MyD88- and TRIF-dependent pathways. A similar inhibitory-effect was exhibited for TLR3 but not on other TLRs. A profound therapeutic effect was observed in vivo, where TIP3 successfully alleviated the inflammatory response in mice model of collagen-induced arthritis and ameliorated the disease symptoms in psoriasis and SLE models. INTERPRETATION: Our data suggest that TIP3 may be a potential lead candidate for the development of effective therapeutics against TLR-mediated autoimmune disorders. FUNDING: This work was supported by the National Research Foundation of Korea (NRF-2019M3A9A8065098, 2019M3D1A1078940 and 2019R1A6A1A11051471). The funders did not have any role in the design of the present study, data collection, data analysis, interpretation, or the writing of the manuscript.
Assuntos
Glicoproteínas de Membrana/química , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em Folha beta , Receptores de Interleucina-1/química , Receptor 4 Toll-Like/química , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Autoimunidade , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Óxido Nítrico/metabolismo , Peptídeos/metabolismo , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismoRESUMO
Liver X receptors (LXRs) have emerged as important regulators of inflammatory gene expression. Previously, we had reported that an LXRα gene promoter polymorphism (-1830 T > C) is associated with systemic lupus erythematosus (SLE). Therefore, we assessed cytokine expression in relation to LXRα polymorphism in monocyte-derived macrophages from patients with SLE. Macrophages were obtained after 72 hours of culture of human monocytes supplemented with phorbol 12-myristate 13-acetate. Cells were transfected with LXRα promoter constructs. Additionally, peripheral blood mononuclear cell- (PBMC-) derived macrophages from the patients were evaluated for proinflammatory cytokines in relation to the genotypes of LXRα -1830 T > C. The expression of LXRα was increased in macrophages; levels of proinflammatory cytokines were decreased with LXRα expression. Production of proinflammatory cytokines varied depending on LXRα -1830 T > C genotype. In particular, expression of LXRα was decreased and that of proinflammatory cytokines was increased for LXRα -1830 TC genotype compared to that for TT genotype. The data were consistent in PBMC-derived macrophages from patients with SLE. Increased proinflammatory cytokines is related to TLR7 and TLR9 expression. These data suggest that the expression levels of LXRα, according to LXRα -1830 T > C genotype, may contribute to the inflammatory response by induction of inflammatory cytokines in SLE.
Assuntos
Leucócitos Mononucleares/metabolismo , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Benzoatos/farmacologia , Benzilaminas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Genótipo , Humanos , Hidrocarbonetos Fluorados/farmacologia , Immunoblotting , Leucócitos Mononucleares/efeitos dos fármacos , Receptores X do Fígado/agonistas , Macrófagos/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Sulfonamidas/farmacologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismoRESUMO
Free fatty acid receptor 4 (FFA4) has been reported to be a receptor for n-3 fatty acids (FAs). Although n-3 FAs are beneficial for bone health, a role of FFA4 in bone metabolism has been rarely investigated. We noted that FFA4 was more abundantly expressed in both mature osteoclasts and osteoblasts than their respective precursors and that it was activated by docosahexaenoic acid. FFA4 knockout (Ffar4(-/-)) and wild-type mice exhibited similar bone masses when fed a normal diet. Because fat-1 transgenic (fat-1(Tg+)) mice endogenously converting n-6 to n-3 FAs contain high n-3 FA levels, we crossed Ffar4(-/-) and fat-1(Tg+) mice over two generations to generate four genotypes of mice littermates: Ffar4(+/+);fat-1(Tg-), Ffar4(+/+);fat-1(Tg+), Ffar4(-/-);fat-1(Tg-), and Ffar4(-/-);fat-1(Tg+). Female and male littermates were included in ovariectomy- and high-fat diet-induced bone loss models, respectively. Female fat-1(Tg+) mice decreased bone loss after ovariectomy both by promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In a high-fat diet-fed model, male fat-1(Tg+) mice had higher bone mass resulting from stimulated bone formation and reduced bone resorption than their wild-type littermates, only when they had the Ffar4(+/+) background, but not the Ffar4(-/-) background. In vitro studies supported the role of FFA4 as n-3 FA receptor in bone metabolism. In conclusion, FFA4 is a dual-acting factor that increases osteoblastic bone formation and decreases osteoclastic bone resorption, suggesting that it may be an ideal target for modulating metabolic bone diseases.
Assuntos
Reabsorção Óssea/metabolismo , Ácidos Graxos Ômega-3/sangue , Fêmur/metabolismo , Osteogênese/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Reabsorção Óssea/genética , Dieta Hiperlipídica , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Ovariectomia , Receptores Acoplados a Proteínas G/genéticaRESUMO
Osterix (Osx) is an essential transcription factor for osteoblast differentiation and bone formation. Osx knockout show a complete absence of bone formation, whereas Osx conditional knockout in osteoblasts produce an osteopenic phenotype after birth. Here, we questioned whether Osx has a potential role in regulating physiological homeostasis. In Osx heterozygotes expressing low levels of Osx in bones, the expression levels of pro-inflammatory cytokines were significantly elevated, indicating that reduced Osx expression may reflect an inflammatory-prone state. In particular, the expression of interleukin-6, a key mediator of chronic inflammation, was increased in Osx heterozygotes and decreased in Osx overexpressing osteoblasts, and transcriptionally down-regulated by Osx. Although no significant differences were revealed in renal morphology and function between Osx heterozygotes and wild-type under normoxic conditions, recovery of kidneys after ischemic damage was remarkably delayed in Osx heterozygotes, as indicated by elevated blood urea nitrogen and creatinine levels, and by morphological alterations consistent with acute tubular necrosis. Eventually, protracted low Osx expression level caused an inflammatory-prone state in the body, resulting in the enhanced susceptibility to renal injury and the delayed renal repair after ischemia/reperfusion. This study suggests that the maintenance of Osx expression in bone is important in terms of preventing the onset of an inflammatory-prone state.
Assuntos
Interleucina-6/biossíntese , Rim/metabolismo , Rim/patologia , Regeneração , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Heterozigoto , Inflamação/patologia , Interleucina-6/genética , Rim/fisiopatologia , Testes de Função Renal , Camundongos , Modelos Biológicos , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese , Fator de Transcrição Sp7 , Transcrição GênicaRESUMO
Osx plays essential roles in regulating osteoblast and chondrocyte differentiation, and bone formation during mouse skeletal development. However, many questions remain regarding the requirement for Osx in different cell lineages. In this study, we asked whether Osx is required for craniofacial bone formation derived from cranial neural crest (CNC) cells. The Osx gene was conditionally inactivated in CNC-derived cells using a Wnt1-Cre recombination system. Neural crest-specific inactivation of Osx resulted in the complete absence of intramembranous skeletal elements derived from the CNC, and CNC-derived endochondral skeletal elements were also affected by Osx inactivation. Interestingly, Osx inactivated CNC-derived cells, which were recapitulated by lacZ expression, occupied the same regions of craniofacial skeletal elements as observed for controls. However, cells lost their osteogenic ability to differentiate into functional osteoblasts by Osx inactivation. These results suggest that Osx is important for craniofacial bone formation by CNC-derived cells. This finding provides novel insights of the regulation of craniofacial development by the gene network and transcription factors, and the understanding of human diseases caused by neural crest developmental abnormalities.
Assuntos
Anormalidades Craniofaciais/genética , Ossos Faciais/embriologia , Crista Neural/anormalidades , Osteogênese/genética , Fatores de Transcrição/fisiologia , Animais , Anormalidades Craniofaciais/patologia , Ossos Faciais/anormalidades , Ossos Faciais/patologia , Inativação Gênica , Integrases/genética , Camundongos , Camundongos Transgênicos , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Proteína Wnt1/genéticaRESUMO
Umbilical cord blood (UCB) has recently been recognized as a new source of mesenchymal stem cells (MSCs) for use in stem cell therapy. We studied the effects of systemic injection of human UCB-MSCs and their conditioned medium (CM) on ovariectomy (OVX)-induced bone loss in nude mice. Ten-week-old female nude mice were divided into six groups: Sham-operated mice treated with vehicle (Sham-Vehicle), OVX mice subjected to UCB-MSCs (OVX-MSC), or human dermal fibroblast (OVX-DFB) transplantation, OVX mice treated with UCB-MSC CM (OVX-CM), zoledronate (OVX-Zol), or vehicle (OVX-Vehicle). Although the OVX-Vehicle group exhibited significantly less bone mineral density (BMD) gain compared with the Sham-Vehicle group, transplantation of hUCB-MSCs (OVX-MSC group) has effectively prevented OVX-induced bone mass attenuation. Notably, the OVX-CM group also showed BMD preservation comparable to the OVX-MSC group. In addition, microcomputed tomography analysis demonstrated improved trabecular parameters in both the OVX-MSC and OVX-CM groups compared to the OVX-Vehicle or OVX-DFB group. Histomorphometric analysis showed increased bone formation parameters, accompanied by increased serum procollagen type-I N-telopeptide levels in OVX-MSC and OVX-CM mice. However, cell-trafficking analysis failed to demonstrate engraftment of MSCs in bone tissue 48 h after cell infusion. In vitro, hUCB-MSC CM increased alkaline phosphatase (ALP) activity in human bone marrow-derived MSCs and mRNA expression of collagen type 1, Runx2, osterix, and ALP in C3H10T1/2 cells. Furthermore, hUCB-MSC CM significantly increased survival of osteocyte-like MLO-Y4 cells, while it inhibited osteoclastic differentiation. To summarize, transplantation of hUCB-MSCs could effectively prevent OVX-mediated bone loss in nude mice, which appears to be mediated by a paracrine mechanism rather than direct engraftment of the MSCs.
Assuntos
Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/terapia , Meios de Cultivo Condicionados/farmacologia , Sangue Fetal/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Ovariectomia , Animais , Biomarcadores/sangue , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Reabsorção Óssea/sangue , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Radiografia , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/patologia , Coluna Vertebral/fisiopatologia , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/patologia , Tíbia/fisiopatologiaRESUMO
PPARγ has critical role in the differentiation of mesenchymal stem cells into adipocytes while suppressing osteoblastic differentiation. We generated transgenic mice that overexpress PPARγ specifically in osteoblasts under the control of a 2.3-kb procollagen type 1 promoter (Col.1-PPARγ). Bone mineral density (BMD) of 6- to 14-week-old Col.1 - PPARγ male mice was 8% to 10% lower than that of their wild-type littermates, whereas no difference was noticed in Col.1-PPARγ female mice. Col.1-PPARγ male mice exhibited decreased bone volume (45%), trabecular thickness (23%), and trabecular number (27%), with a reciprocal increase in trabecular spacing (51%). Dynamic histomorphometric analysis also revealed that bone-formation rate (42%) and mineral apposition rate (32%) were suppressed significantly in Col.1-PPARγ male mice compared with their wild-type littermates. Interestingly, osteoclast number and surface also were decreased by 40% and 58%, respectively, in Col.1-PPARγ male mice. In vitro whole-marrow culture for osteoclastogenesis also showed a significant decrease in osteoclast formation (approximately 35%) with the cells from Col.1-PPARγ male mice, and OPG/RANKL ratio was reduced in stromal cells from Col.1-PPARγ male mice. Although there was no significant difference in BMD in Col.1-PPARγ female mice up to 30 weeks, bone loss was accelerated after ovariectomy compared with wild-type female mice (-3.9% versus -6.8% at 12 weeks after ovariectomy, p < .01), indicating that the effects of PPARγ overexpression becomes more evident in an estrogen-deprived state in female mice. In conclusion, in vivo osteoblast-specific overexpression of PPARγ negatively regulates bone mass in male mice and accelerates estrogen-deficiency-related bone loss in female mice.
Assuntos
Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/patologia , Osteoblastos/metabolismo , Ovariectomia , PPAR gama/metabolismo , Animais , Western Blotting , Peso Corporal , Densidade Óssea , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Reabsorção Óssea/fisiopatologia , Osso e Ossos/metabolismo , Osso e Ossos/fisiopatologia , Extratos Celulares , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamanho do Órgão , Osteogênese , Fenótipo , Células Estromais/citologia , Células Estromais/metabolismoRESUMO
Bone formation in vertebrates depends on the proliferation and differentiation of chondrocytes and osteoblasts, which are derived from a mesenchymal precursor cells and are required for skeletal development. This process relies on many transcription factor genes that have functions in bone cell proliferation and differentiation. Over the years, various transcription factors that play essential roles for skeletal formation have been identified in in vivo and/or in vitro molecular and genetic studies. In regulation of bone formation, signaling pathways with these factors have also been established. Major transcription factors including Sox9, Runx2, and Osterix, which are active in chondrocytes or osteoblasts or even in both cells, are indispensable for chondrocyte and/or osteoblast differentiation. Here, the transcriptional regulation of these genes for bone formation will be reviewed on the basis of in vivo mouse models.