Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 141(3): 231-237, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36322931

RESUMO

Germ line loss-of-function heterozygous mutations in the RUNX1 gene cause familial platelet disorder with associated myeloid malignancies (FPDMM) characterized by thrombocytopenia and a life-long risk of hematological malignancies. Although gene therapies are being considered as promising therapeutic options, current preclinical models do not recapitulate the human phenotype and are unable to elucidate the relative fitness of mutation-corrected and RUNX1-heterozygous mutant hematopoietic stem and progenitor cells (HSPCs) in vivo long term. We generated a rhesus macaque with an FPDMM competitive repopulation model using CRISPR/Cas9 nonhomologous end joining editing in the RUNX1 gene and the AAVS1 safe-harbor control locus. We transplanted mixed populations of edited autologous HSPCs and tracked mutated allele frequencies in blood cells. In both animals, RUNX1-edited cells expanded over time compared with AAVS1-edited cells. Platelet counts remained below the normal range in the long term. Bone marrows developed megakaryocytic dysplasia similar to human FPDMM, and CD34+ HSPCs showed impaired in vitro megakaryocytic differentiation, with a striking defect in polyploidization. In conclusion, the lack of a competitive advantage for wildtype or control-edited HSPCs over RUNX1 heterozygous-mutated HSPCs long term in our preclinical model suggests that gene correction approaches for FPDMM will be challenging, particularly to reverse myelodysplastic syndrome/ acute myeloid leukemia predisposition and thrombopoietic defects.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Animais , Humanos , Macaca mulatta , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/patologia , Trombopoese , Fenótipo
2.
PLoS Biol ; 20(9): e3001599, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36170207

RESUMO

Cell division, wherein 1 cell divides into 2 daughter cells, is fundamental to all living organisms. Cytokinesis, the final step in cell division, begins with the formation of an actomyosin contractile ring, positioned midway between the segregated chromosomes. Constriction of the ring with concomitant membrane deposition in a specified spatiotemporal manner generates a cleavage furrow that physically separates the cytoplasm. Unique lipids with specific biophysical properties have been shown to localize to intercellular bridges (also called midbody) connecting the 2 dividing cells; however, their biological roles and delivery mechanisms remain largely unknown. In this study, we show that ceramide phosphoethanolamine (CPE), the structural analog of sphingomyelin, has unique acyl chain anchors in Drosophila spermatocytes and is essential for meiotic cytokinesis. The head group of CPE is also important for spermatogenesis. We find that aberrant central spindle and contractile ring behavior but not mislocalization of phosphatidylinositol phosphates (PIPs) at the plasma membrane is responsible for the male meiotic cytokinesis defect in CPE-deficient animals. Further, we demonstrate the enrichment of CPE in multivesicular bodies marked by Rab7, which in turn localize to cleavage furrow. Volume electron microscopy analysis using correlative light and focused ion beam scanning electron microscopy shows that CPE-enriched Rab7 positive endosomes are juxtaposed on contractile ring material. Correlative light and transmission electron microscopy reveal Rab7 positive endosomes as a multivesicular body-like organelle that releases its intraluminal vesicles in the vicinity of ingressing furrows. Genetic ablation of Rab7 or Rab35 or expression of dominant negative Rab11 results in significant meiotic cytokinesis defects. Further, we show that Rab11 function is required for localization of CPE positive endosomes to the cleavage furrow. Our results imply that endosomal delivery of CPE to ingressing membranes is crucial for meiotic cytokinesis.


Assuntos
Citocinese , Esfingomielinas , Actomiosina/metabolismo , Animais , Citocinese/genética , Drosophila/genética , Endossomos/metabolismo , Masculino , Meiose , Fosfatos de Fosfatidilinositol/metabolismo
3.
Viruses ; 13(4)2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918371

RESUMO

The visualization of cellular ultrastructure over a wide range of volumes is becoming possible by increasingly powerful techniques grouped under the rubric "volume electron microscopy" or volume EM (vEM). Focused ion beam scanning electron microscopy (FIB-SEM) occupies a "Goldilocks zone" in vEM: iterative and automated cycles of milling and imaging allow the interrogation of microns-thick specimens in 3-D at resolutions of tens of nanometers or less. This bestows on FIB-SEM the unique ability to aid the accurate and precise study of architectures of virus-cell interactions. Here we give the virologist or cell biologist a primer on FIB-SEM imaging in the context of vEM and discuss practical aspects of a room temperature FIB-SEM experiment. In an in vitro study of SARS-CoV-2 infection, we show that accurate quantitation of viral densities and surface curvatures enabled by FIB-SEM imaging reveals SARS-CoV-2 viruses preferentially located at areas of plasma membrane that have positive mean curvatures.


Assuntos
COVID-19/patologia , Interações entre Hospedeiro e Microrganismos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , SARS-CoV-2 , Animais , Comunicação Celular , Membrana Celular , Chlorocebus aethiops , Células Epiteliais/virologia , Humanos , Pulmão , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA