Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Genom Data ; 25(1): 58, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867147

RESUMO

BACKGROUND: Johne's disease is a chronic wasting disease caused by the bacterium Mycobacterium avium subspecies paratuberculosis (MAP). Johne's disease is highly contagious and MAP infection in dairy cattle can eventually lead to death. With no available treatment for Johne's disease, genetic selection and improvements in management practices could help reduce its prevalence. In a previous study, the gene coding interleukin-10 receptor subunit alpha (IL10Rα) was associated with Johne's disease in dairy cattle. Our objective was to determine how IL10Rα affects the pathogenesis of MAP by examining the effect of a live MAP challenge on a mammary epithelial cell line (MAC-T) that had IL10Rα knocked out using CRISPR/cas9. The wild type and the IL10Rα knockout MAC-T cell lines were exposed to live MAP bacteria for 72 h. Thereafter, mRNA was extracted from infected and uninfected cells. Differentially expressed genes were compared between the wild type and the IL10Rα knockout cell lines. Gene ontology was performed based on the differentially expressed genes to determine which biological pathways were involved. RESULTS: Immune system processes pathways were targeted to determine the effect of IL10Rα on the response to MAP infection. There was a difference in immune response between the wild type and IL10Rα knockout MAC-T cell lines, and less difference in immune response between infected and not infected IL10Rα knockout MAC-T cells, indicating IL10Rα plays an important role in the progression of MAP infection. Additionally, these comparisons allowed us to identify other genes involved in inflammation-mediated chemokine and cytokine signalling, interleukin signalling and toll-like receptor pathways. CONCLUSIONS: Identifying differentially expressed genes in wild type and ILR10α knockout MAC-T cells infected with live MAP bacteria provided further evidence that IL10Rα contributes to mounting an immune response to MAP infection and allowed us to identify additional potential candidate genes involved in this process. We found there was a complex immune response during MAP infection that is controlled by many genes.


Assuntos
Células Epiteliais , Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Mycobacterium avium subsp. paratuberculosis/imunologia , Animais , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Linhagem Celular , Bovinos , Paratuberculose/imunologia , Paratuberculose/microbiologia , Paratuberculose/genética , Feminino , Subunidade alfa de Receptor de Interleucina-10/genética , Subunidade alfa de Receptor de Interleucina-10/metabolismo , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia
2.
PLoS One ; 16(8): e0248453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34370740

RESUMO

The aim of this study was to determine the association between concentrations of progesterone (P4) during previous the estrous cycle with the intensity of spontaneous or estrogen-induced estrous expression and pregnancy per artificial insemination (P/AI). A total of 1,953 AI events from lactating Holstein cows were used, consisting of 1,289 timed AI events from experiment 1 (Exp. 1) and 664 AI events from experiment 2 (Exp. 2). In Exp. 1, cows were bred after a timed AI protocol based on estradiol and P4. In Exp. 2 animals were bred upon spontaneous estrus detection. In both experiments cows were continuously monitored by an automated activity monitor (AAM), in Exp.1 a relative increase of activity was calculated (i.e., percentage of increase activity at estrus compared to cow's baseline activity) and in Exp.2, activity data from each cow were computed into an index value that ranged from 0 to 100. In Exp.2 duration (hours) of estrus were calculated and defined as the total time above the threshold (35 index). The intensity of estrous expression was determined for each event and classified as either high or low intensity using the median of each experiment. Blood samples were collected for P4 analysis in Exp. 1 at -4 d, 0 d, and 7 d relative to timed AI, and in Exp. 2 immediately following estrus (0 d), 7 d, 14 d, and 21 d post-AI. Concentration of P4 was classified as greater or lower according to the median value in each experiment. Cows with lower concentrations of P4 at AI had greater estrous expression in Exp. 1 (363.6 ± 5.2 vs. 275.9 ± 8.0% relative increase) and Exp. 2 (76.7 ± 1.9 vs. 67.4 ± 4.7 index; and 12.5 ± 0.5 vs. 9.3 ± 1.8 hours). Cows with a greater intensity of estrous expression at timed AI had greater concentrations of P4 at -4 d than cows with lower intensity estrus or no estrous expression (4.6 ± 0.2 vs. 3.6 ± 0.2 vs. 3.7 ± 0.2 ng/mL). Cows with greater concentrations of P4 at -4 d had greater P/AI (32.8 ± 4.4 vs. 22.4 ± 4.5%), whereas cows with lesser concentrations of P4 at d0 for either timed AI (35.2 ± 3.4 vs. 19.6 ± 4.6%) or spontaneous estrus (31.8 ± 2.8 vs. 23.4 ± 3.2%) had greater P/AI. Cows with greater concentrations of P4 7 d post-timed AI had greater P/AI compared with cows that had lower concentration of P4 (39.1 ± 2.9 vs. 24.7 ± 2.6%). Similarly, cows that had lower concentrations of P4 at 7 d, 14 d and 21 d post-spontaneous estrus tended to have lower P/AI when compared with cows with greater concentrations of P4. Overall, concentrations of P4 prior to and at AI were associated with greater estrous intensity and P/AI at both spontaneous and timed AI events.


Assuntos
Bovinos/fisiologia , Ciclo Estral/sangue , Estro/sangue , Fertilidade/fisiologia , Progesterona/sangue , Animais , Bovinos/sangue , Ciclo Estral/fisiologia , Estro/fisiologia , Sincronização do Estro , Feminino , Inseminação Artificial/veterinária , Gravidez
3.
J Dairy Sci ; 104(7): 8050-8061, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896633

RESUMO

Genome-wide association studies based on SNP have been completed for multiple traits in dairy cattle; however, copy number variants (CNV) could add genomic information that has yet to be harnessed. The objectives of this study were to identify CNV in genotyped Holstein animals and assess their association with hoof health traits using deregressed estimated breeding values as pseudophenotypes. A total of 23,256 CNV comprising 1,645 genomic regions were identified in 5,845 animals. Fourteen genomic regions harboring structural variations, including 9 deletions and 5 duplications, were associated with at least 1 of the studied hoof health traits. This group of traits included digital dermatitis, interdigital dermatitis, heel horn erosion, sole ulcer, white line lesion, sole hemorrhage, and interdigital hyperplasia; no regions were associated with toe ulcer. Twenty candidate genes overlapped with the regions associated with these traits including SCART1, NRXN2, KIF26A, GPHN, and OR7A17. In this study, an effect on infectious hoof lesions could be attributed to the PRAME (Preferentially Expressed Antigen in Melanoma) gene. Almost all genes detected in association with noninfectious hoof lesions could be linked to known metabolic disorders. The knowledge obtained considering information of associated CNV to the traits of interest in this study could improve the accuracy of estimated breeding values. This may further increase the genetic gain for these traits in the Canadian Holstein population, thus reducing the involuntary animal losses due to lameness.


Assuntos
Doenças dos Bovinos , Doenças do Pé , Casco e Garras , Animais , Canadá , Bovinos/genética , Doenças dos Bovinos/genética , Variações do Número de Cópias de DNA , Doenças do Pé/genética , Doenças do Pé/veterinária , Estudo de Associação Genômica Ampla/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA