Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 37(10): 110077, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879280

RESUMO

Viruses rearrange host membranes to support different entry steps. Polyomavirus simian virus 40 (SV40) reorganizes the endoplasmic reticulum (ER) membrane to generate focus structures that enable virus ER-to-cytosol escape, a decisive infection step. The molecular architecture of the ER exit site that might illuminate why it is ideally suited for membrane penetration is unknown. Here 3D focused ion beam scanning electron microscopy (FIB-SEM) reconstruction reveals that the ER focus structure consists of multi-tubular ER junctions where SV40 preferentially localizes, suggesting that tubular branch points are virus ER-to-cytosol penetration sites. Functional analysis demonstrates that lunapark-an ER membrane protein that typically stabilizes three-way ER junctions-relocates to the ER foci, where it supports focus formation, leading to SV40 ER escape and infection. Our results reveal how a virus repurposes the activity of an ER membrane protein to form a virus-induced ER substructure required for membrane escape and suggest that ER tubular junctions are vulnerable sites exploited by viruses for membrane penetration.


Assuntos
Citosol/virologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Vírus 40 dos Símios/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Interações Hospedeiro-Patógeno , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Masculino , Proteínas de Membrana/genética , Vírus 40 dos Símios/patogenicidade , Vírus 40 dos Símios/ultraestrutura
2.
Biochem Soc Trans ; 48(5): 2173-2184, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33119046

RESUMO

The endoplasmic reticulum (ER), with its expansive membranous system and a vast network of chaperones, enzymes, sensors, and ion channels, orchestrates diverse cellular functions, ranging from protein synthesis, folding, secretion, and degradation to lipid biogenesis and calcium homeostasis. Strikingly, some of the functions of the ER are exploited by viruses to promote their life cycles. During entry, viruses must penetrate a host membrane and reach an intracellular destination to express and replicate their genomes. These events lead to the assembly of new viral progenies that exit the host cell, thereby initiating further rounds of infection. In this review, we highlight how three distinct viruses - polyomavirus, flavivirus, and coronavirus - co-opt key functions of the ER to cause infection. We anticipate that illuminating this virus-ER interplay will provide rational therapeutic approaches to combat the virus-induced diseases.


Assuntos
Coronavirus/fisiologia , Retículo Endoplasmático/metabolismo , Flavivirus/fisiologia , Interações Hospedeiro-Patógeno , Polyomavirus/fisiologia , Humanos , Chaperonas Moleculares/metabolismo , Viroses/metabolismo , Viroses/prevenção & controle , Internalização do Vírus , Replicação Viral
3.
Nat Commun ; 11(1): 1127, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111841

RESUMO

Although viruses must navigate the complex host endomembrane system to infect cells, the strategies used to achieve this is unclear. During entry, polyomavirus SV40 is sorted from the late endosome (LE) to the endoplasmic reticulum (ER) to cause infection, yet how this is accomplished remains enigmatic. Here we find that EMC4 and EMC7, two ER membrane protein complex (EMC) subunits, support SV40 infection by promoting LE-to-ER targeting of the virus. They do this by engaging LE-associated Rab7, presumably to stabilize contact between the LE and ER. These EMC subunits also bind to the ER-resident fusion machinery component syntaxin18, which is required for SV40-arrival to the ER. Our data suggest that EMC4 and EMC7 act as molecular tethers, inter-connecting two intracellular compartments to enable efficient transport of a virus between these compartments. As LE-to-ER transport of cellular cargos is unclear, our results have broad implications for illuminating inter-organelle cargo transport.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Internalização do Vírus , Animais , Sítios de Ligação , Células COS , Linhagem Celular , Chlorocebus aethiops , Retículo Endoplasmático/virologia , Endossomos/metabolismo , Endossomos/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Membranas Intracelulares/virologia , Proteínas de Membrana/genética , Ligação Proteica , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Vírus 40 dos Símios/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
4.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28356524

RESUMO

Membrane penetration by nonenveloped viruses remains enigmatic. In the case of the nonenveloped polyomavirus simian virus 40 (SV40), the virus penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol and then traffics to the nucleus to cause infection. We previously demonstrated that the cytosolic Hsc70-SGTA-Hsp105 complex is tethered to the ER membrane, where Hsp105 and SGTA facilitate the extraction of SV40 from the ER and transport of the virus into the cytosol. We now find that Hsc70 also ejects SV40 from the ER into the cytosol in a step regulated by SGTA. Although SGTA's N-terminal domain, which mediates homodimerization and recruits cellular adaptors, is dispensable during ER-to-cytosol transport of SV40, this domain appears to exert an unexpected post-ER membrane translocation function during SV40 entry. Our study thus establishes a critical function of Hsc70 within the Hsc70-SGTA-Hsp105 complex in promoting SV40 ER-to-cytosol membrane penetration and unveils a role of SGTA in controlling this step.IMPORTANCE How a nonenveloped virus transports across a biological membrane to cause infection remains mysterious. One enigmatic step is whether host cytosolic components are co-opted to transport the viral particle into the cytosol. During ER-to-cytosol membrane transport of the nonenveloped polyomavirus SV40, a decisive infection step, a cytosolic complex composed of Hsc70-SGTA-Hsp105 was previously shown to associate with the ER membrane. SGTA and Hsp105 have been shown to extract SV40 from the ER and transport the virus into the cytosol. We demonstrate here a critical role of Hsc70 in SV40 ER-to-cytosol penetration and reveal how SGTA controls Hsc70 to impact this process.


Assuntos
Proteínas de Transporte/metabolismo , Citosol/virologia , Retículo Endoplasmático/virologia , Proteínas de Choque Térmico HSC70/metabolismo , Vírus 40 dos Símios/fisiologia , Internalização do Vírus , Animais , Transporte Biológico/fisiologia , Células COS , Proteínas de Transporte/genética , Linhagem Celular , Chlorocebus aethiops , Citosol/metabolismo , Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Membranas Intracelulares/virologia , Chaperonas Moleculares/metabolismo , RNA Interferente Pequeno
5.
Elife ; 52016 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-28012275

RESUMO

Destabilization of a non-enveloped virus generates a membrane transport-competent viral particle. Here we probe polyomavirus SV40 endoplasmic reticulum (ER)-to-cytosol membrane transport, a decisive infection step where destabilization initiates this non-enveloped virus for membrane penetration. We find that a member of the ER membrane protein complex (EMC) called EMC1 promotes SV40 ER membrane transport and infection. Surprisingly, EMC1 does so by using its predicted transmembrane residue D961 to bind to and stabilize the membrane-embedded partially destabilized SV40, thereby preventing premature viral disassembly. EMC1-dependent stabilization enables SV40 to engage a cytosolic extraction complex that ejects the virus into the cytosol. Thus EMC1 acts as a molecular chaperone, bracing the destabilized SV40 in a transport-competent state. Our findings reveal the novel principle that coordinated destabilization-stabilization drives membrane transport of a non-enveloped virus.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas/metabolismo , Vírus 40 dos Símios/fisiologia , Internalização do Vírus , Animais , Transporte Biológico , Células COS , Células HEK293 , Humanos , Proteínas de Membrana
6.
PLoS Pathog ; 11(8): e1005086, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26244546

RESUMO

Mammalian cytosolic Hsp110 family, in concert with the Hsc70:J-protein complex, functions as a disaggregation machinery to rectify protein misfolding problems. Here we uncover a novel role of this machinery in driving membrane translocation during viral entry. The non-enveloped virus SV40 penetrates the endoplasmic reticulum (ER) membrane to reach the cytosol, a critical infection step. Combining biochemical, cell-based, and imaging approaches, we find that the Hsp110 family member Hsp105 associates with the ER membrane J-protein B14. Here Hsp105 cooperates with Hsc70 and extracts the membrane-penetrating SV40 into the cytosol, potentially by disassembling the membrane-embedded virus. Hence the energy provided by the Hsc70-dependent Hsp105 disaggregation machinery can be harnessed to catalyze a membrane translocation event.


Assuntos
Retículo Endoplasmático/virologia , Interações Hospedeiro-Parasita/fisiologia , Infecções por Polyomavirus/metabolismo , Vírus 40 dos Símios/patogenicidade , Infecções Tumorais por Vírus/metabolismo , Transporte Biológico/fisiologia , Linhagem Celular , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Transdução de Sinais/fisiologia , Transfecção
7.
J Virol ; 89(8): 4058-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25631089

RESUMO

UNLABELLED: The nonenveloped simian virus 40 (SV40) hijacks the three endoplasmic reticulum (ER) membrane-bound J proteins B12, B14, and C18 to escape from the ER into the cytosol en route to successful infection. How C18 controls SV40 ER-to-cytosol membrane penetration is the least understood of these processes. We previously found that SV40 triggers B12 and B14 to reorganize into discrete puncta in the ER membrane called foci, structures postulated to represent the cytosol entry site (C. P. Walczak, M. S. Ravindran, T. Inoue, and B. Tsai, PLoS Pathog 10: e1004007, 2014). We now find that SV40 also recruits C18 to the virus-induced B12/B14 foci. Importantly, the C18 foci harbor membrane penetration-competent SV40, further implicating this structure as the membrane penetration site. Consistent with this, a mutant SV40 that cannot penetrate the ER membrane and promote infection fails to induce C18 foci. C18 also regulates the recruitment of B12/B14 into the foci. In contrast to B14, C18's cytosolic Hsc70-binding J domain, but not the lumenal domain, is essential for its targeting to the foci; this J domain likewise is necessary to support SV40 infection. Knockdown-rescue experiments reveal that C18 executes a role that is not redundant with those of B12/B14 during SV40 infection. Collectively, our data illuminate C18's contribution to SV40 ER membrane penetration, strengthening the idea that SV40-triggered foci are critical for cytosol entry. IMPORTANCE: Polyomaviruses (PyVs) cause devastating human diseases, particularly in immunocompromised patients. As this virus family continues to be a significant human pathogen, clarifying the molecular basis of their cellular entry pathway remains a high priority. To infect cells, PyV traffics from the cell surface to the ER, where it penetrates the ER membrane to reach the cytosol. In the cytosol, the virus moves to the nucleus to cause infection. ER-to-cytosol membrane penetration is a critical yet mysterious infection step. In this study, we clarify the role of an ER membrane protein called C18 in mobilizing the simian PyV SV40, a PyV archetype, from the ER into the cytosol. Our findings also support the hypothesis that SV40 induces the formation of punctate structures in the ER membrane, called foci, that serve as the portal for cytosol entry of the virus.


Assuntos
Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Infecções por Polyomavirus/fisiopatologia , Vírus 40 dos Símios/fisiologia , Replicação Viral/fisiologia , Animais , Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular , Chlorocebus aethiops , Citoplasma/virologia , Retículo Endoplasmático/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Immunoblotting , Microscopia de Fluorescência , Chaperonas Moleculares , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Interferente Pequeno/genética
8.
PLoS One ; 9(3): e92126, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643253

RESUMO

Rotavirus is the single, most important agent of infantile gastroenteritis in many animal species, including humans. In developing countries, rotavirus infection attributes approximately 500,000 deaths annually. Like other viruses it establishes an intimate and complex interaction with the host cell to counteract the antiviral responses elicited by the cell. Among various pattern recognition receptors (PAMPs) of the host, the cytosolic RNA helicases interact with viral RNA to activate the Mitochondrial Antiviral Signaling protein (MAVS), which regulates cellular interferon response. With an aim to identify the role of different PAMPs in rotavirus infected cell, MAVS was found to degrade in a time dependent and strain independent manner. Rotavirus non-structural protein 1 (NSP1) which is a known IFN antagonist, interacted with MAVS and degraded it in a strain independent manner, resulting in a complete loss of RNA sensing machinery in the infected cell. To best of our knowledge, this is the first report on NSP1 functionality where a signaling protein is targeted unanimously in all strains. In addition NSP1 inhibited the formation of detergent resistant MAVS aggregates, thereby averting the antiviral signaling cascade. The present study highlights the multifunctional role of rotavirus NSP1 and reinforces the fact that the virus orchestrates the cellular antiviral response to its own benefit by various back up strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Interações Hospedeiro-Patógeno , Rotavirus/genética , Proteínas não Estruturais Virais/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Regulação da Expressão Gênica , Genes Reporter , Células HEK293 , Células HT29 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/antagonistas & inibidores , Interferon beta/genética , Interferon beta/metabolismo , Leupeptinas/farmacologia , Luciferases/genética , Luciferases/metabolismo , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Rotavirus/metabolismo , Transdução de Sinais , Proteínas não Estruturais Virais/metabolismo
9.
J Biol Chem ; 287(42): 35004-35020, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22888003

RESUMO

Viruses have evolved to encode multifunctional proteins to control the intricate cellular signaling pathways by using very few viral proteins. Rotavirus is known to express six nonstructural and six structural proteins. Among them, NSP4 is the enterotoxin, known to disrupt cellular Ca(2+) homeostasis by translocating to endoplasmic reticulum. In this study, we have observed translocation of NSP4 to mitochondria resulting in dissipation of mitochondrial membrane potential during virus infection and NSP4 overexpression. Furthermore, transfection of the N- and C-terminal truncated NSP4 mutants followed by analyzing NSP4 localization by immunofluorescence microscopy identified the 61-83-amino acid region as the shortest mitochondrial targeting signal. NSP4 exerts its proapoptotic effect by interacting with mitochondrial proteins adenine nucleotide translocator and voltage-dependent anion channel, resulting in dissipation of mitochondrial potential, release of cytochrome c from mitochondria, and caspase activation. During early infection, apoptosis activation by NSP4 was inhibited by the activation of cellular survival pathways (PI3K/AKT), because PI3K inhibitor results in early induction of apoptosis. However, in the presence of both PI3K inhibitor and NSP4 siRNA, apoptosis was delayed suggesting that the early apoptotic signal is initiated by NSP4 expression. This proapoptotic function of NSP4 is balanced by another virus-encoded protein, NSP1, which is implicated in PI3K/AKT activation because overexpression of both NSP4 and NSP1 in cells resulted in reduced apoptosis compared with only NSP4-expressing cells. Overall, this study reports on the mechanism by which enterotoxin NSP4 exerts cytotoxicity and the mechanism by which virus counteracts it at the early stage for efficient infection.


Assuntos
Apoptose , Enterotoxinas/biossíntese , Regulação Viral da Expressão Gênica , Glicoproteínas/biossíntese , Mitocôndrias/metabolismo , Infecções por Rotavirus/metabolismo , Rotavirus/metabolismo , Toxinas Biológicas/biossíntese , Proteínas não Estruturais Virais/biossíntese , Animais , Cálcio , Caspases/genética , Caspases/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Enterotoxinas/genética , Ativação Enzimática/genética , Glicoproteínas/genética , Haplorrinos , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/genética , Mitocôndrias/patologia , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rotavirus/genética , Rotavirus/patogenicidade , Infecções por Rotavirus/genética , Infecções por Rotavirus/patologia , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA