Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell Biochem Funct ; 42(4): e4067, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874324

RESUMO

Dendritic cells (DCs) are known as antigen-presenting cells that are capable of regulating immune responses. DCs and T cells can interact mutually to induce antigen-specific T-cell responses. Cabergoline, which is a dopamine (DA) receptor agonist, seems to implement anti-inflammatory properties in the immune system, and therefore in the present study the impact of a DA receptor agonist cabergoline on the monocyte-derived DCs (moDCs) was assessed. Immature moDCs were treated with lipopolysaccharide to produce mature DCs (mDCs). The expression of DCs' related surface markers namely: CD11c, HLA-DR, and CD86 was measured by utilizing of flow cytometry. Real-time PCR was the technique of choice to determine the levels at which diverse inflammatory and anti-inflammatory factors in cabergoline-treated and control mDC groups were expressed. DCs treated with cabergoline displayed a significant decrease in CD86 and HLA-DR expression, markers linked to maturation and antigen presentation, respectively. In addition, the cabergoline-mDC group showed a considerable decline in terms of the levels at which IL-10, TGF-ß, and IDO genes were expressed, and an increase in the expression of TNF-α and IL-12 in comparison to the mDC control group. Our findings revealed that cabergoline as an immunomodulatory agent can relatively shift DCs into an immunogenic state, and there is a requirement for further investigations to evaluate the effects of cabergoline-treated DCs on the T cell responses in vitro, and also in various diseases including cancer in animal models.


Assuntos
Cabergolina , Células Dendríticas , Agonistas de Dopamina , Monócitos , Humanos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Cabergolina/farmacologia , Agonistas de Dopamina/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/citologia , Fenótipo , Ergolinas/farmacologia , Células Cultivadas , Lipopolissacarídeos/farmacologia
2.
Mol Biol Rep ; 51(1): 646, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727931

RESUMO

BACKGROUND: Breast cancer (BC) is one of the most common cancers in the world. Despite the many advances that have been made in treating patients, many patients are still resistant to treatment. CD44 is one of the surface glycoproteins of BC cells that plays an important role in the proliferation of these cells and inhibition of their apoptosis. Therefore, targeting it can be a treatment way for BC patients. METHODS: In this study, the effect of anti-CD44 siRNA on the proliferation, apoptosis, and migration rate of MDA-MB-231 and 4T1 cells was investigated. The techniques used in this study were MTT assay, RT-PCR, and flow cytometry. RESULTS: The apoptosis and proliferation rates in CD44 siRNA-treated cells were higher and lower, respectively, compared to untreated cells. Also, cell migration was less in treated cells compared to untreated cells. CD44 siRNA also decreased the expression of CXCR4, c-myc, Vimentin, ROCK, and MMP-9. CONCLUSION: Finally, CD44 targeting can be a good treatment option to make BC cells more sensitive to apoptosis.


Assuntos
Apoptose , Neoplasias da Mama , Receptores de Hialuronatos , RNA Interferente Pequeno , Feminino , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/antagonistas & inibidores , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , RNA Interferente Pequeno/genética , Vimentina/metabolismo , Vimentina/genética
3.
Adv Pharm Bull ; 14(1): 231-240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38585468

RESUMO

Purpose: MicroRNAs (miRNAs) are a group of small regulatory non-coding RNAs, which are dysregulated through tumor progression. let-7 and MIR-145 are both tumor suppressor microRNAs that are downregulated in a wide array of cancers including colorectal cancer (CRC). Methods: This study was aimed to investigate the effect of simultaneous replacement of these two tumor suppressor miRNAs on proliferation, apoptosis, and migration of CRC cells. HCT-116 with lower expression levels of hsa-let-7a-3p and MIR-145-5p was selected for functional investigations. The cells were cultured and transfected with hsa-let-7a and MIR-145, separately and in combination. Cell viability and apoptosis rates were assessed by MTT assay and flow cytometry, respectively. Cell cycle status was further evaluated using flow cytometry and qRT-PCR was employed to evaluate gene expression. Results: The obtained results showed that exogenous overexpression of MIR-145 and hsa-let-7a in HCT-116 cells could cooperatively decrease CRC cell proliferation and induce sub-G1 cell cycle arrest. Moreover, hsa-let-7a and MIR-145 co-transfection significantly increased apoptosis induction compared to separate transfected cells and control through modulating the expression levels of apoptosis-related genes including Bax, Bcl-2, P53, Caspase-3, Caspase-8, and Caspase-9. Furthermore, qRT-PCR results illustrated that hsa-let-7a and MIR-145 combination more effectively downregulated MMP-9 and MMP-2 expression, as the important modulators of metastasis, compared to the controls. Conclusion: Taken together, considering that exogenous overexpression of MIR-145 and hsa-let-7a showed cooperative anti-cancer effects on CRC cells, their combination may be considered as a novel therapeutic strategy for the treatment of CRC.

4.
Gene ; 896: 148043, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042220

RESUMO

BACKGROUND: As inhibitory immune checkpoint molecules, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and V-domain Ig suppressor of T-cell activation (VISTA) can be expressed in tumoral cells and facilitate immune evasion of tumoral cells. Herein, we studied the significance of tumor-intrinsic CTLA-4 and VISTA silencing in tumor development and inflammatory factors expression in a co-culture system with MCF7 and T-cells. METHODS: MCF7 cells were transfected with 60 pmol of CTLA-siRNA, VISTA-siRNA, and dual VISTA-/CTLA-4-siRNA. The MTT assay was performed to study the effect of CTLA-4 and VISTA knockdown on the viability of MCF7 cells. Colony formation and wound-healing assays were performed to investigate the effect of CTLA-4 and VISTA silencing on the clonogenicity and migration of MCF7 cells. Flow cytometry was used to study the significance of CTLA-4 and VISTA knockdown on the apoptosis and cell cycle of MCF7 cells. Also, a co-culture system with MCF7 and T-cells was developed to study the expression levels of IL-2, IFN-γ, TNF-α, TGF-ß, and IL-10 following CTLA-4 and VISTA knockdown. The expression levels of caspase3, Bax, Bcl2, and MMP-9 were also investigated using quantitative real-time PCR. Finally, the TCGA Breast Cancer and GSE45827 datasets were analyzed to study the potential prognostic values of VISTA and CTLA-4, their expression difference in luminal A breast cancer and non-tumoral tissues, and their correlation in luminal A breast cancer tissues. RESULTS: Combined knockdown of tumor-intrinsic VISTA and CTLA-4 is superior in upregulating IL-2, IFN-γ, and TNF-α, downregulating TGF-ß and IL-10 in T lymphocytes. Also, the combined silencing arrests the cell cycle at the sub-G1 phase, decreases migration, inhibits clonogenicity, and reduces cell viability of MCF7 cells. This combined treatment upregulates caspase 9 and BAX and downregulates MMP-9 in MCF7 cells. Our in-silico results have demonstrated a significant positive correlation between CTLA-4 and VISTA in luminal A breast cancer. CONCLUSION: The additive effect of the combined knockdown of tumor-intrinsic VISTA and CTLA-4 can substantially upregulate pro-inflammatory factors, downregulate anti-inflammatory factors, and inhibit tumor development in MCF7 cells. The significant positive correlation between VISTA and CTLA-4 in luminal A breast cancer might support the idea that a network of inhibitory immune checkpoint molecules regulates anti-tumoral immune responses; thus, combinational immune checkpoint molecules blockade can be suggested.


Assuntos
Antígenos B7 , Neoplasias da Mama , Antígeno CTLA-4 , Linfócitos T , Feminino , Humanos , Proteína X Associada a bcl-2 , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Antígeno CTLA-4/genética , Proteínas de Checkpoint Imunológico , Interleucina-10 , Interleucina-2 , Ativação Linfocitária , Metaloproteinase 9 da Matriz , Células MCF-7 , RNA Interferente Pequeno/genética , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa , Antígenos B7/genética
5.
Biomedicines ; 11(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38137433

RESUMO

BACKGROUND: Gastric cancer, ranked as the fifth most common cancer worldwide, presents multiple treatment challenges. These obstacles often arise due to cancer stem cells, which are associated with recurrence, metastasis, and drug resistance. While dendritic cell (DC)-based immunotherapy has shown promise as a therapeutic strategy, its efficacy can be limited by the tumor microenvironment and certain inhibitory immune checkpoint molecules, such as B7H7. SiRNA-medicated knockdown of B7H7 in tumor cell lysate-pulsed DCs can increase cytokine secretion and autologous T lymphocyte expansion. This study aimed to evaluate the impact of B7H7 suppression in gastric cancer cell lysate-pulsed DCs on the stimulatory potential of autologous CD3+ T lymphocytes. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated and monocytes were obtained; then, they were differentiated to immature DCs (iDCs) by GM-CSF and IL-4. Tumor cell lysates from human gastric cancer cell lines were harvested, and iDCs were transformed into mature DCs (mDCs) by stimulating iDCs with tumor cell lysate and lipopolysaccharide. B7H7-siRNA was delivered into mDCs using electroporation, and gene silencing efficiency was assessed. The phenotypic characteristics of iDCs, mDCs, and B7H7-silenced mDCs were evaluated using specific surface markers, an inverted light microscope, and flow cytometry. CD3+ T cells were isolated via magnetically activated cell sorting. They were labeled with CFSE dye and co-cultured with mDCs and B7H7-silenced mDCs to evaluate their ability to induce T-cell proliferation. T-cell proliferation was assessed using flow cytometry. The concentration of TGF-ß, IL-4, and IFN-γ secreted from CD3+ T cells in the co-cultured supernatant was evaluated to investigate the cytokine secretory activity of the cells. RESULTS: Transfection of B7H7 siRNA into mDCs was performed in optimal conditions, and the siRNA transfection effectively reduced B7H7 mRNA expression in a dose-dependent manner. SiRNA-mediated B7H7 knockdown in mDCs enhanced maturation and activation of the DCs, as demonstrated by an increased surface expression of CD11c, CD86, and CD40. Co-culture experiments revealed that B7H7-silenced mDCs had more capacity to induce T cell proliferation compared to non-transfected mDCs. The cytokine production patterns of T cells were also altered. Upon examining the levels of TGF-ß, IL-4, and IFN-γ released by CD3+ T cells in the co-culture supernatant, we found that silencing B7H7 in mDCs resulted in a rise in IL-4 secretion and a reduction in TGF-ß levels compared to mDCs that were not transfected. CONCLUSIONS: The study found that suppressing B7H7 expression in DCs significantly enhances their maturation and stimulatory activity when exposed to gastric cancer cell lysate. These B7H7-silenced DCs can substantially increase cytokine production and promote co-cultured T-cell expansion. Consequently, inhibiting B7H7 in DCs may offer a practical strategy to enhance the ability of DCs to initiate T lymphocyte responses and improve the effectiveness of DC-based cell therapy for cancer patients.

6.
Adv Pharm Bull ; 13(2): 378-384, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37342379

RESUMO

Purpose: MicroRNAs (miRNAs) can contribute to cancer initiation, development, and progression. In this study, the effect of miRNA-4800 restoration on the growth and migration inhibition of human breast cancer (BC) cells was investigated. Methods: For this purpose, transfection of miR-4800 was performed into MDA-MB-231 BC cells using jetPEI. Subsequently, the expression levels of miR-4800 and CXCR4, ROCK1, CD44, and vimentin genes were measured using quantitative real-time polymerase chain reaction (q-RT-PCR) and specific primers. Also, the proliferation inhibition and apoptosis induction of cancer cells were evaluated by MTT and flow cytometry (Annexin V-PI method) techniques, respectively. Additionally, cancer cell migration after miR-4800 transfection was assessed by wound-healing (scratch) assay. Results: The restoration of miR-4800 in MDA-MB-231 cells resulted in the decreased expression level of CXCR4 (P ˂ 0.01), ROCK1 (P ˂ 0.0001), CD44 (P ˂ 0.0001), and vimentin (P ˂ 0.0001) genes. Also, MTT results showed restoration of miR-4800 could significantly reduce cell viability rate (P ˂ 0.0001) compared with the control group. Cell migration remarkably inhibited (P ˂ 0.001) upon miR-4800 transfection in treated BC cells. Flow cytometry data demonstrated that miR-4800 replacement considerably induced apoptosis in cancer cells (P ˂ 0.001) compared with control cells. Conclusion: Taken together, it seems that miR-4800 can act as a tumor suppressor miRNA in BC and play an essential role in modulating apoptosis, migration, and metastasis in BC. Therefore, it may be suggested as a potential therapeutic target in treating BC by performing additional tests in the future.

7.
Photodiagnosis Photodyn Ther ; 41: 103212, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36436735

RESUMO

Photodynamic therapy (PDT) is a light-based anti-neoplastic therapeutic approach. Growing evidence indicates that combining conventional anti-cancer therapies with PDT can be a promising approach to treat malignancies. Herein, we aimed to investigate anti-cancer effects of the combination treatment of zinc phthalocyanine (ZnPc)-PDT with tamoxifen (TA) on MDA-MB-231 cells (as a triple-negative breast cancer (TNBC) cell line). For this purpose, we investigated the cytotoxicity of TA and ZnPc-PDT on MDA-MB-231 cells performing the MTT assay. The effect of TA and ZnPc-PDT on the apoptosis of MDA-MB-231 cells was studied using Annexin V/PI and DAPI staining. The wound-healing assay, and colony formation assay were performed to study the effect of TA and ZnPc-PDT on the migration, and clonogenicity of MDA-MB-231 cells, respectively. The qRT-PCR was done to study the gene expression of caspase-8, caspase-9, caspase-3, ZEB1, ROCK1, SNAIL1, CD133, CD44, SOX2, and ABCG2 (ATP-binding cassette sub-family G member 2). Based on our results, monotherapies with TA and ZnPc-PDT can remarkably increase cell cytotoxicity effects, stimulate apoptosis via downregulating Bcl-2 and upregulating caspase-3 and caspase-9, inhibit migration via downregulating SNAIL1 and ZEB1, and suppress clonogenicity via downregulating SOX2 and CD44 in MDA-MB-231 cells. Besides, these monotherapies can downregulate the expression of ABCG2 in MDA-MB-231 cells. Nevertheless, the combination treatment can potentiate the above-mentioned anti-cancer effects compared to monotherapy with TA. Of interest, the combined treatment of TA with ZnPc-PDT can synergically increase cell cytotoxicity effects on MDA-MB-231 cells. In fact, synergistic effects were estimated by calculation of Combination Index (CI); that synergistic outcomes were observed in all groups. Also, this combination treatment can significantly upregulate the caspase-8 gene expression and downregulate ROCK1 and CD133 gene expression in MDA-MB-231 cells. Overall, our results show that ZnPc-PDT can more sensitize the MDA-MB-231 cells to TA treatment. Based on our knowledge and experiment, the synergistic effects of ZnPc-PDT and TA deserve further evaluation in cancer research.


Assuntos
Fotoquimioterapia , Neoplasias de Mama Triplo Negativas , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Caspase 3 , Caspase 9/farmacologia , Caspase 8/farmacologia , Caspase 8/uso terapêutico , Fotoquimioterapia/métodos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Linhagem Celular Tumoral , Indóis , Apoptose , Quinases Associadas a rho/farmacologia , Quinases Associadas a rho/uso terapêutico
8.
Pathol Res Pract ; 240: 154194, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36370483

RESUMO

Melanoma is the riskiest type of skin cancer. Its prevalence has been rapidly increased over the last three decades. SIX1, SIX2, SIX3, SIX4, SIX5, and SIX6 are members of the sine oculis homeobox (SIX) homolog family. It is imperative to identify new melanoma biomarkers to improve the predictive value for melanoma prognosis, which could enhance our understanding of carcinogenesis and tumor progression. In this study, we investigated whether silencing of SIX4 in a melanoma cell line (A375 cells) in combination with Cisplatin can affect the apoptosis and suppression of cell cycle progression, migration of the melanoma cells. MTT test and colony formation assay was applied to determine the IC50 of Cisplatin and the combined effect of SIX4 siRNA and Cisplatin on the viability and clonogenesis of the A-375 cells. qRT-PCR was performed to determine the c-myc, BCL-2, BAX, MMP-9, CXCR4, and Rock genes expression. Furthermore, flow cytometry was applied to evaluate apoptosis, autophagy, and the cell cycle status in different groups. Finally, wound healing assay was employed to evaluate the effect of this combination therapy on migratory capacity. SIX4 suppression increased the chemosensitivity of A-375 cells to Cisplatin and decreased its efficient dose. Furthermore, SIX4 suppression alongside Cisplatin reduced cell migration rate, arrested the cell cycle at the G1 phase, induced apoptosis by modulating the expression of apoptotic target genes, induced autophagy, and also significantly inhibits clonogenesis of A-375 cells. SIX4 plays a significant role in the chemosensitivity and pathogenesis of melanoma. Therefore, SIX4 suppression, in combination with Cisplatin, may be a promising therapeutic approach in treating melanoma.


Assuntos
Cisplatino , Melanoma , Humanos , Apoptose , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , RNA Interferente Pequeno/metabolismo
9.
Pathol Res Pract ; 236: 154004, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35834883

RESUMO

Dysregulated cell cycle progression has been implicated in cancer development. Cytarabine can interfere with the S phase of the cell cycle; however, tumoral cells can develop chemoresistance. Specific tumor-suppressive microRNAs (miRs) replacement can arrest the cell cycle and enhance chemosensitivity. Herein, we investigated the effect of hsa-miR-34a-5p replacement and cytarabine on the cell cycle, chemosensitivity, and migration of MDA-MB-231 cells. Our in-silico results have shown that hsa-miR-34a-5p has considerable interactions with ß-catenin, CDK4, CDK6, and cyclin-D1; therefore, hsa-miR-34a-5p replacement could arrest cell cycle at the sub-G1 phase. Our in vitro results have indicated that monotherapies with hsa-miR-34a-5p replacement and cytarabine can substantially arrest the cell cycle at the sub-G1 phase; however, the maximal cell cycle arrest has been observed with the combined therapy. Ectopic overexpression of hsa-miR-34a-5p has remarkably enhanced the chemosensitivity of MDA-MB-231 cells. Also, the combined therapy has considerably suppressed the migration of MDA-MB-231 cells compared to the monotherapies. Although the combination therapy has not remarkably decreased the expression of CDK4, CDK6, and cyclin-D1 compared to monotherapy with cytarabine, the combination therapy has substantially downregulated ß-catenin expression compared to monotherapy with cytarabine. Overall, this combination therapy is a promising approach to arresting the cell cycle and migration of MDA-MB-231 cells.


Assuntos
MicroRNAs , beta Catenina , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Citarabina/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , beta Catenina/metabolismo
10.
Adv Pharm Bull ; 12(2): 398-403, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35620335

RESUMO

Purpose: To investigate the downregulation of high mobility group AT-hook 2 (HMGA2)expression by small interfering RNAs (siRNAs) in PC3 prostate cancer cell line. HMGA2belongs to the non-histone chromatin-binding protein family that serves as a crucial regulator ofgene transcription. The overexpression of this gene is positively correlated with various prostatecancer (PC)-related properties. Thus, HMGA2 is an emerging target in PC treatment. This studyaimed to examine the impact of siRNAs targeting HMGA2 on the viability, migration, andapoptosis processes of the PC3 PC cell line. Methods: siRNA transfection was conducted with a liposome-mediated approach. The mRNAand protein expression levels for HMGA2 are evaluated by real-time polymerase chain reaction(qRT-PCR) and western blot analysis. The cytotoxic properties of HMGA2-siRNA were measuredby MTT assay on PC3 cells. The migration of PC3 cells was measured by implementing awound-healing assay. Apoptosis measurement was also quantified by TUNEL assay. Results: Transfection with siRNA significantly decreased both mRNA and protein levels of theHMGA2 gene in a dose-dependent manner after 48 hours. Also, we demonstrated that theknockdown of HMGA2 led to a reduction in cell viability, migration ability, and enhancedapoptosis of PC3 cells in vitro. Conclusion: Our findings recommend that the specific siRNA of HMGA2 may efficiently beable to decrease PC progression. Therefore, it may be a promising adjuvant treatment in PC.

11.
Adv Pharm Bull ; 12(1): 169-175, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35517889

RESUMO

Purpose: microRNA-193a-5p is one of the well-known tumor suppressor miRNAs in the body but in many cases, its expression became reduced in patients suffering from gastric cancer (GC). The main purpose of this study was to restore the function of this miRNA in human GC cells and investigating the effects of enhanced expression of miR-193a-5p on proliferation, apoptosis, and migration of GC cells upon in vitro transfection. Methods: The KATO III GC cells were treated with 100 nM of miR-193a-5p or negative control sequences. Following that, the MTT assay, flow cytometry assay, and wound-healing assay were applied to estimate the impacts of enhanced expression of this miRNA on the viability, apoptosis, and migration rate of the cells, respectively. Moreover, the total RNA was isolated and alterations in the mRNA expression ratio of migratory genes were measured by qRT-PCR techniques. Results: The findings designated that enhanced expression of miR-193a-5p suppressed the migratory ability of the cells, but had no significant effects on cell survival or apoptosis of the transfected cells. In addition, this inhibitory function of miR-193a-5p on the migration rate of the KATO III cell line occurs with concurrent suppression of vimentin and MMP-9 gene expression. Conclusion: It can be concluded that miR-193a-5p negatively influences the migratory ability of the cancerous cells and restoring its effects can be regarded as a promising target of future therapeutic interventions, especially for GC metastasis.

12.
Clin Nutr ; 41(5): 1083-1092, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35413570

RESUMO

BACKGROUND & AIMS: Toll-like receptor (TLR) 2 and 4 are involved in the pathogenesis of Behçet's disease (BD). The current study aimed to investigate the effect of zinc supplementation on TLR-2/4 expression and the clinical manifestations of BD. METHODS: In this double-blind placebo-controlled randomized clinical trial, 50 BD patients were randomly allocated into either zinc gluconate (30 mg/day) or placebo groups for 12 weeks. Before and after the intervention, the surface and mRNA expression level of TLR-2 and TLR-4 in the leukocytes, serum level of zinc and tumor necrosis factor-α (TNF-α), quality of life, anthropometric measures, and blood pressure of patients were collected. BD activity was studied using the nonocular Iranian Behçet's disease dynamic activity measure (IBDDAM), Behçet's disease current activity form (BDCAF), and total inflammatory activity index (TIAI) at the pre-and post-intervention phases. The effect sizes were compared between two groups using analysis of covariance. RESULTS: There were significant decrease in TLR-2 mRNA (P = 0.038) and protein expression (P = 0.034) and nonocular IBDDAM score (P = 0.046) in the zinc group compared to placebo at the endpoint. The serum level of zinc was increased in the zinc group (P < 0.001). Zinc supplementation significantly decreased the TLR-4 surface (P = 0.012) and mRNA expression (P = 0.028) within the group. However, this decrease was not significant compared to the placebo group. There was no significant difference between the two groups regarding the serum level of TNF-α, BDCAF, TIAI, quality of life, anthropometric measures, and blood pressure (P > 0.05). CONCLUSIONS: The present study revealed that zinc supplementation significantly improved nonocular IBDDAM score and TLR-2 expression in BD patients. GOV REGISTRATION NUMBER: NCT05098678.


Assuntos
Síndrome de Behçet , Gluconatos , Zinco , Síndrome de Behçet/tratamento farmacológico , Suplementos Nutricionais , Gluconatos/uso terapêutico , Humanos , Irã (Geográfico) , Qualidade de Vida , RNA Mensageiro/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética , Zinco/uso terapêutico
13.
Arch Physiol Biochem ; 128(5): 1323-1329, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32449873

RESUMO

Background: Prostate cancer (PC) is one of the most prevalent types of malignancies in males. Here, we replaced the miRNA-143 in PC cells by using a vector-based miRNA-143 transfection approach.Materials and methods: The miRNA-143 vector was transfected into the cells and qRT-PCR was applied to assess the expression of target genes in PC3 cells. Also, the MTT, scratch wound-healing, and DAPI staining assays were done to assess the proliferation, migration, and apoptosis of the cells, respectively.Results: The findings of the qRT-PCR determined the enhanced expression of miRNA-143 and other cancer-associated genes. The MTT and wound-healing assays revealed the proliferation and migration reduction in the transfected cells in comparison to control cells that contain an empty vector.Conclusion: The miRNA-143 has a significant impact on cell growth and migration during PC metastasis, and it may be a promising candidate for molecular therapies of PC.


Assuntos
MicroRNAs , Neoplasias da Próstata , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética
14.
Biomed Pharmacother ; 145: 112370, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34862113

RESUMO

AIMS: Besides suppressing anti-tumoral immune responses, tumor-intrinsic inhibitory immune checkpoints have been implicated in tumor development. Herein, we aimed to investigate the significance of tumor-intrinsic CD73, as an inhibitory immune checkpoint, in non-small cell lung cancer (NSCLC) development and propose a novel therapeutic approach. MAIN METHODS: We investigated the cell viability, chemosensitivity, apoptosis, migration, and the cell cycle of A-549 and NCI-H1299 following treatment with cisplatin and CD73-small interfering RNA (siRNA) transfection. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to study the viability of studied groups and chemosensitivity of tumoral cells. Flow cytometry and 4',6-diamidino-2-phenylindole (DAPI) staining were used to investigate the apoptosis of NSCLC cells. Flow cytometry and the wound-healing assay were used to investigate the cell cycle and migration of NSCLC cells, respectively. The mRNA expression levels of c-Myc, caspase 3, ROCK, and MMP-9 were investigated to study the underlying molecular mechanism. KEY FINDINGS: CD73-siRNA transfection has significantly decreased the cell viability and enhanced the chemosensitivity of A-549 and NCI-H1299 cells to cisplatin. CD73-siRNA has considerably stimulated apoptosis, arrested the cell cycle, inhibited tumor migration, downregulated the mRNA expression of c-Myc, MMP-9, and ROCK, and upregulated caspase 3 expression in NSCLC cells. Besides, combined cisplatin therapy with CD73-siRNA transfection has potentiated the aforementioned anti-tumoral effects of cisplatin on NSCLC cells. SIGNIFICANCE: Besides suppressing anti-tumoral immune responses, tumor-intrinsic CD73 can facilitate NSCLC development, and the combined cisplatin therapy with CD73-siRNA transfection can substantially enhance the chemosensitivity of NSCLC to cisplatin and potentiates cisplatin-induced anti-tumoral effects on NSCLC.


Assuntos
5'-Nucleotidase/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Ligadas por GPI/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Pulmonares/genética , RNA Interferente Pequeno/genética , Transfecção
15.
Adv Pharm Bull ; 11(4): 755-764, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34888223

RESUMO

Purpose: The expression of miR-146a-5p and miR-193a-5p in colorectal cancer (CRC) is associated with cancer development, metastasis, and reduced survival rate of the tumor-suffered subjects. This examination aimed to assess the impact of these microRNAs (miRNAs) in CRC and their mechanisms in the proliferation and migration of cancer cells. Methods: miR-146a-5p and -193a-5p were transfected into the HT-29 cell line and assessed their impact on metastasis-related genes. The synergistic effects of these miRNAs on migration were evaluated by wound healing approach. To assess the influence of these miRNAs on the proliferation of and apoptosis of cells, the MTT test, annexin V staining test, and DAPI staining test were done. Then, the protein expression of extracellular-signal-regulated kinase (ERK) and phosphorylated ERK (p-ERK) were investigated. Results: miR-146a-5p and-193a-5p could inhibit the CRC cells proliferation, and could synergistically induce apoptosis in CRC cells, and also repressed cell migration, and could reduce p-ERK expression. Conclusion: miR-146a-5p and-193a-5p have an important role in cell viability and proliferation via ERK signaling pathway. Thus, the simultaneous use of these miRNAs may be suggested as a probable therapeutic strategy in this cancer therapy.

16.
Med Oncol ; 39(1): 9, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34761351

RESUMO

The deregulation of microRNAs (miRs) has been identified in tumor development. Indeed, the restoration of tumor-suppressive miRs has been associated with inhibited tumor development in various cancers. Herein, we aimed to evaluate the impact of combined miR-383-5p restoration, as a tumor-suppressive miR, with taxol therapy in suppressing MDA-MB-231 breast cancer development. MDA-MB-231 cell line was restored with miR-383-5p and treated with paclitaxel both in combined and separate manners. The MTT experiment was carried out to measure the cytotoxicity of the therapeutic approaches on the tumoral cells. Besides, flow cytometry was conducted to assess apoptosis and cell cycle status following the treatments. Furthermore, the expression levels of critical factors contributed to tumor proliferation, migration, apoptosis were investigated via the qRT-PCR and western blotting techniques. The outcomes pointed out that the miR-383-5p might substantially enhance the chemosensitivity of MDA-MB-231 to taxol. Besides, miR-383-5p restoration and the combined therapy of miR-383-5p restoration with paclitaxel could remarkably increase apoptosis, decrease cell viability, arrest the cell cycle, inhibit clonogenicity, suppress tumor migration, suppress the PI3K/Akt signaling pathway, and down-regulate PD-L1 expression of BC cells. The restoration of miR-383-5p can enhance the chemosensitivity of MDA-MB-231 cells to taxol. Despite the anti-tumoral effects of miR-383-5p restoration on MDA-MB-231 breast cancer development, the combined therapy of miR-383-5p restoration with paclitaxel can be more effective in repressing MDA-MB-231 breast cancer development.


Assuntos
Neoplasias da Mama , MicroRNAs , Paclitaxel/farmacologia , Apoptose/efeitos dos fármacos , Antígeno B7-H1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
17.
Life Sci ; 282: 119826, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265363

RESUMO

The immunosuppressive tumor microenvironment has been implicated in attenuating anti-tumoral immune responses and tumor growth in various cancers. Inhibitory immune checkpoints have been introduced as the primary culprits for developing the immunosuppressive tumor microenvironment. Therefore, a better understanding of the cross-talk between inhibitory immune checkpoints in the tumor microenvironment can pave the way for introducing novel approaches for treating affected patients. Growing evidence indicates that CD39 and CD73, as novel checkpoints, can transform adenosine triphosphate (ATP)-mediated pro-inflammatory tumor microenvironment into an adenosine-mediated immunosuppressive one via the purinergic signaling pathway. Indeed, enzymatic processes of CD39 and CD73 have crucial roles in adjusting the extent, intensity, and chemical properties of purinergic signals. This study aims to review the biological function of CD39 and CD73 and shed light on their significance in regulating anti-tumoral immune responses in various cancers.


Assuntos
5'-Nucleotidase/imunologia , Apirase/imunologia , Tolerância Imunológica , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Proteínas Ligadas por GPI/imunologia , Humanos
18.
Gene ; 801: 145844, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34274471

RESUMO

In the treatment of breast cancer (BC), as an important type of cancer in women, the specific cells, called cancer stem cells (CSCs), are the reason of failure and metastasis. So, targeting CSCs can be used as a novel strategy in cancer therapy in addition to common therapeutic strategies. According to the importance of CSCs, we tried to find a correlation between stemness and metastatic characteristics of BC cells, to address whether CSCs are a potential target for cancer therapy. Here, we evaluated the NANOG inhibition by siRNA and the increase of Let-7a levels by miRNA mimic in breast cancer cells and the effects of these changes on biologic aspects like cell apoptosis, stemness and invasion. Our results showed that the inhibition of NANOG combined with Let-7a restoration contributed to significant decrease in malignant phenotypes and stemness feature of BC cells. In conclusion, these findings showed that the combination of Let-7a miRNA mimic and Nanog siRNA could be exploited as a new treatment strategy to improve the cancer therapy outcome.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/genética , Proteína Homeobox Nanog/genética , Antígenos CD/genética , Apoptose/genética , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Proteína HMGA2/genética , Humanos , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Esferoides Celulares/patologia , Transfecção , Vimentina/genética
19.
Hum Immunol ; 82(9): 668-678, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34020831

RESUMO

Inflammation promotes cancer development. To a large extent, this can be attributed to the recruitment of myeloid-derived suppressor cells (MDSCs) to tumors. These cells are known for establishing an immunosuppressive tumor microenvironment by suppressing T cell activities. However, MDSCs also promote metastasis and angiogenesis. Critically, as small non-coding RNAs that regulate gene expression, microRNAs (miRNAs) control MDSC activities. In this review, we discuss how miRNA networks regulate key MDSC signaling pathways, how they shape MDSC development, differentiation and activation, and how this impacts tumor development. By targeting the expression of miRNAs in MDSCs, we can alter their main signaling pathways. In turn, this can compromise their ability to promote multiple hallmarks of cancer. Therefore, this may represent a new powerful strategy for cancer immunotherapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Animais , Biomarcadores , Comunicação Celular , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Transdução de Sinais , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
20.
Genes (Basel) ; 12(2)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673143

RESUMO

Breast cancer is the most common women's malignancy in the world and, for subgroups of patients, treatment outcomes remain poor. Thus, more effective therapeutic strategies are urgently needed. MicroRNAs (miRNAs) have emerged as promising therapeutic tools and targets, as they play significant roles in regulating key cellular processes by suppressing gene expression. However, additive opportunities involving miRNAs have been underexplored. For example, both miR-34a and miR-200c individually suppress the development of different types of cancer, but the cellular effects of their combined actions remain unknown. Here, we show that miR-34a and miR-200c levels are reduced in breast tumors compared to adjacent normal tissues and that this additively predicts poor patient survival. In addition, in cell lines, miR-34a and miR-200c additively induce apoptosis and cell cycle arrest, while also inhibiting proliferation, invasion, migration, stemness and epithelial-to-mesenchymal transition (EMT). Mechanistically, both miRNA-34a and miR-200c directly target HIF1-α and subsequently downregulate VEGFR, MMP9 and CXCR4, although combined miRNA-34a and miR-200c delivery suppresses mouse xenograft tumor development as effectively as individual delivery. We establish a model, supported by in vitro and clinical data, which collectively suggest that the co-delivery of miR-34a and miR-200c represents a promising novel therapeutic strategy for breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Metaloproteinase 9 da Matriz/genética , Camundongos , Pessoa de Meia-Idade , Prognóstico , Intervalo Livre de Progressão , Receptores CXCR4/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA