Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4870, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849333

RESUMO

Critical challenges remain in clinical translation of extracellular vesicle (EV)-based therapeutics due to the absence of methods to enrich cells with high EV secretion. Current cell sorting methods are limited to surface markers that are uncorrelated to EV secretion or therapeutic potential. Here, we utilize a nanovial technology for enrichment of millions of single cells based on EV secretion. This approach is applied to select mesenchymal stem cells (MSCs) with high EV secretion as therapeutic cells for improving treatment. The selected MSCs exhibit distinct transcriptional profiles associated with EV biogenesis and vascular regeneration and maintain high levels of EV secretion after sorting and regrowth. In a mouse model of myocardial infarction, treatment with high-secreting MSCs improves heart functions compared to treatment with low-secreting MSCs. These findings highlight the therapeutic importance of EV secretion in regenerative cell therapies and suggest that selecting cells based on EV secretion could enhance therapeutic efficacy.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Infarto do Miocárdio/terapia , Infarto do Miocárdio/metabolismo , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Separação Celular/métodos , Masculino
2.
Nat Nanotechnol ; 19(3): 354-363, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38082117

RESUMO

Cells secrete numerous bioactive molecules that are essential for the function of healthy organisms. However, scalable methods are needed to link individual cell secretions to their transcriptional state over time. Here, by developing and using secretion-encoded single-cell sequencing (SEC-seq), which exploits hydrogel particles with subnanolitre cavities (nanovials) to capture individual cells and their secretions, we simultaneously measured the secretion of vascular endothelial growth factor A (VEGF-A) and the transcriptome for thousands of individual mesenchymal stromal cells. Our data indicate that VEGF-A secretion is heterogeneous across the cell population and is poorly correlated with the VEGFA transcript level. The highest VEGF-A secretion occurs in a subpopulation of mesenchymal stromal cells characterized by a unique gene expression signature comprising a surface marker, interleukin-13 receptor subunit alpha 2 (IL13RA2), which allowed the enrichment of this subpopulation. SEC-seq enables the identification of gene signatures linked to specific secretory states, facilitating mechanistic studies, the isolation of secretory subpopulations and the development of means to modulate cellular secretion.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Transcriptoma , Células-Tronco Mesenquimais/metabolismo
3.
Bioeng Transl Med ; 6(3): e10240, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589608

RESUMO

Cerebrovascular ischemia from intracranial atherosclerosis remains difficult to treat. Although current revascularization procedures, including intraluminal stents and extracranial to intracranial bypass, have shown some benefit, they suffer from perioperative and postoperative morbidity. To address these limitations, here we developed a novel approach that involves gluing of arteries and subsequent transmural anastomosis from the healthy donor into the ischemic recipient. This approach required an elastic vascular sealant with distinct mechanical properties and adhesion to facilitate anastomosis. We engineered two hydrogel-based glues: an elastic composite hydrogel based on methacryloyl elastin-like polypeptide (mELP) combined with gelatin methacryloyl (GelMA) and a stiff glue based on pure GelMA. Two formulations with distinct mechanical characteristics were necessary to achieve stable anastomosis. The elastic GelMA/mELP composite glue attained desirable mechanical properties (elastic modulus: 288 ± 19 kPa, extensibility: 34.5 ± 13.4%) and adhesion (shear strength: 26.7 ± 5.4 kPa) to the blood vessel, while the pure GelMA glue exhibited superior adhesion (shear strength: 49.4 ± 7.0 kPa) at the cost of increased stiffness (elastic modulus: 581 ± 51 kPa) and reduced extensibility (13.6 ± 2.5%). The in vitro biocompatibility tests confirmed that the glues were not cytotoxic and were biodegradable. In addition, an ex vivo porcine anastomosis model showed high arterial burst pressure resistance of 34.0 ± 7.5 kPa, which is well over normal (16 kPa), elevated (17.3 kPa), and hypertensive crisis (24 kPa) systolic blood pressures in humans. Finally, an in vivo swine model was used to assess the feasibility of using the newly developed two-glue system for an endovascular anastomosis. X-ray imaging confirmed that the anastomosis was made successfully without postoperative bleeding complications and the procedure was well tolerated. In the future, more studies are required to evaluate the performance of the developed sealants under various temperature and humidity ranges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA