Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Pathol Res Pract ; 262: 155521, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39182450

RESUMO

AIM: The objective of this study was to investigate the pooled prevalence and possible association between polyomavirus infection and lung cancer. METHODS: A systematic publication search was conducted by identifying relevant cross-sectional and case-control studies from major online databases. Heterogeneity, OR, and corresponding 95 % CI were applied to all studies through meta-analysis and forest plot. Random effects models were used to calculate the overall pooled prevalence. Visual inspection of a funnel plot plotting the log-transformed OR and its associated standard error of the log (OR) was combined with the Begg and Egger test to examine the presence and influence of publication bias. Analyzes were performed using Stata software v.14.1. RESULTS: 23 articles (33 datasets) were included in the meta-analysis, of which 14 datasets were case/control and the rest were cross-sectional studies. The pooled polyomavirus infection rate in lung cancer patients was 0.06 % (0.02-0.11 %). In subgroup analysis, the pooled prevalence of JCV, MCPyV, KI, SV40, BKV, WU, MU, and STL was 21 %, 7 %, 6 %, 2 %, 0 %, 0 %, 0 %, and 0 % respectively. An association has been found between polyomavirus infection and lung cancer [summary OR 6.33 (95 % CI (1.76-22.77); I2=67.45 %)]. The subgroup analysis, based on the virus type, showed a strong association between MCPyV and lung cancer [summary OR 13.61 (95 % CI 2.41-76.59; I2=40.0 %)]. despite the high prevalence of JCV DNA in lung cancer tissue, analysis of case-control studies showed that JCV is not associated with lung cancer and does not increase the risk of lung cancer. CONCLUSION: This study showed a significant association between polyomaviruses infection with lung cancer. The results also revealed a pooled prevalence of 6 % for polyomaviruses in lung tumor patients. Altogether, the findings of the present work suggest that Merkel cell polyomavirus infection is a potential risk factor for lung cancer.

2.
J Biomed Phys Eng ; 14(3): 287-298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39027706

RESUMO

Background: Radiotherapy, a highly effective method of radiation-based treating cancers, can reduce the size of tumors and affect healthy tissues. Radiation-induced lymphopenia as a side effect of radiation therapy can reduce the effectiveness of the treatment. Objective: This study aimed to examine how taurine can protect peripheral blood lymphocytes from radiation-based apoptosis. Material and Methods: In this experimental study, the effects of the taurine on lymphocytes were studied, and blood samples were divided into three groups: a negative control group that was not treated, a positive control group that was treated with cysteine (100 µg/ml), and a group that was treated with taurine (100 µg. mL-1) in three different doses (4, 8 & 12 Gy) before irradiation. The percentage of apoptotic and necrotic lymphocytes was measured using flow cytometry 48 and 72 hours after the irradiation, respectively. Results: According to the groups treated with taurine, the number of lymphocytes undergoing apoptosis was lower and higher compared to the negative and positive control groups, respectively. The decrease in this value was more pronounced 48 hours after radiation compared to 72 hours. Furthermore, there was a slight increase in the number of apoptotic lymphocytes with increasing radiation dose. Conclusion: Taurine effectively protects human peripheral blood lymphocytes from radiation-based apoptosis.

3.
Clin Genitourin Cancer ; 22(3): 102076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593599

RESUMO

The objective of this work was to review comparisons of the efficacy of 68Ga-PSMA-11 (prostate-specific membrane antigen) PET/CT and multiparametric magnetic resonance imaging (mpMRI) in the detection of prostate cancer among patients undergoing initial staging prior to radical prostatectomy or experiencing recurrent prostate cancer, based on histopathological data. A comprehensive search was conducted in PubMed and Web of Science, and relevant articles were analyzed with various parameters, including year of publication, study design, patient count, age, PSA (prostate-specific antigen) value, Gleason score, standardized uptake value (SUVmax), detection rate, treatment history, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and PI-RADS (prostate imaging reporting and data system) scores. Only studies directly comparing PSMA-PET and mpMRI were considered, while those examining combined accuracy or focusing on either modality alone were excluded. In total, 24 studies comprising 1717 patients were analyzed, with the most common indication for screening being staging, followed by relapse. The findings indicated that 68Ga-PSMA-PET/CT effectively diagnosed prostate cancer in patients with suspected or confirmed disease, and both methods exhibited comparable efficacy in identifying lesion-specific information. However, notable heterogeneity was observed, highlighting the necessity for standardization of imaging and histopathology systems to mitigate inter-study variability. Future research should prioritize evaluating the combined diagnostic performance of both modalities to enhance sensitivity and reduce unnecessary biopsies. Overall, the utilization of PSMA-PET and mpMRI in combination holds substantial potential for significantly advancing the diagnosis and management of prostate cancer.


Assuntos
Isótopos de Gálio , Radioisótopos de Gálio , Imageamento por Ressonância Magnética Multiparamétrica , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Masculino , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Ácido Edético/análogos & derivados , Oligopeptídeos , Compostos Radiofarmacêuticos , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/metabolismo , Prostatectomia , Estadiamento de Neoplasias
4.
Iran Biomed J ; 27(6): 340-8, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950395

RESUMO

Background: The aim of the present study was to evaluate alterations in the vegf gene expression as an angiogenic factor in mouse embryo fibroblasts seeded on the decellularized liver fragments. Methods: Liver tissue samples (n = 10) collected from adult male mice were randomly divided into decellularized and native control groups. Tissues were decellularized by treating with 1% Triton X-100 and 0.1% SDS for 24 hours and assessed by H&E staining and SEM. Then DNA content analysis and toxicity tests were performed. By centrifugation, DiI-labeled mouse embryo fibroblasts were seeded on each scaffold and cultured for one week. The recellularized scaffolds were studied by H&E staining, SEM, and LSCM. After RNA extraction and cDNA synthesis, the expression of the vegf gene in these samples was investigated using real-time RT-PCR. Results: Our observations showed that the decellularized tissues had morphology and porous structure similar to the control group, and their DNA content significantly reduced (p < 0.05) and reached to 4.12% of the control group. The MTT test indicated no significant cellular toxicity for the decellularized scaffolds. Light microscopy, SEM, and LSCM observations confirmed the attachment and penetration of embryonic fibroblast cells on the surface and into different depths of the scaffolds. There was no statistically significant difference in terms of vegf gene expression in the cultured cells in the presence and absence of a scaffold. Conclusion: The reconstructed scaffold had no effect on vegf gene expression. Decellularized mouse liver tissue recellularized by embryonic fibroblasts could have an application in regenerative medicine.


Assuntos
Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular , Masculino , Camundongos , Animais , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/genética , Fígado , DNA , Expressão Gênica , Engenharia Tecidual , Matriz Extracelular
5.
J Cancer Res Ther ; 19(5): 1311-1315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37787300

RESUMO

Purpose: The present study aimed to assess the effects of extremely low-frequency electromagnetic fields (ELF-MF) on structural changes of human osteosarcoma cells by analyzing the stained cytoskeleton for assessing the relationship between the fractal dimension parameter and proliferation rate of radiation-induced cells. Materials and Methods: In this study, 2-mT magnetic fields with various waveforms, including sinusoidal, triangular, and pulsed shapes, were employed to determine the biological effects of ELF-EMF on the human osteosarcoma MG-63 cell line. All experiments were performed in two modes: continuous exposure at 3 h and fractionated irradiations at 3 consecutive days. Afterward, the proliferation assay was implemented for assessing the cell proliferation in each group. Moreover, immunofluorescence staining and confocal imaging were performed to determine the cell shape index. Furthermore, fractal dimension analysis was carried out by processing morphological images. Results: The proliferation and shape index parameters of radiation-induced osteosarcomas significantly decreased compared with non-irradiated cells. In addition, fractal dimensions significantly increased following fractionated exposure at 3 consecutive days. Conclusions: Assessing the fractal dimensions can be considered as a new morphological index for the prognosis of the structural remodeling of human osteosarcoma cells in response to fractionated irradiation of ELF-MF. In addition, various waveforms induce a similar effect on morphological remodeling and cell proliferation.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Campos Eletromagnéticos , Campos Magnéticos , Proliferação de Células
6.
Radiat Prot Dosimetry ; 199(19): 2356-2365, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37694671

RESUMO

Lung lesions can increase the CT number and affect the water-equivalent diameter (Dw), Dw-based conversion factor (CFw), and Dw-based size-specific dose estimate (SSDEw). We evaluated the effect of COVID-19 lesions and total severity score (TSS) on radiation dose considering the effect of automatic tube current modulation (ATCM) and fixed tube current (FTC). A total of 186 chest CT scans were categorised into five TSS groups, including healthy, minimal, mild, moderate and severe. The effective diameter (Deff), Dw, CFw, Deff-based conversion factor (CFeff), volume computed tomography dose index (CTDIVol), pathological dose impact factor (PDIF) 1 and SSDEw were calculated. TSS was correlated with Dw (r = 0.29, p-value = 0.001), CTDIVol (ATCM) (r = 0.23, p = 0.001) and PDIF (r = - 0.51, p-value = 0.001). $\overline{{\mathrm{SSDE}}_{\mathrm{w}}}$ (FTC) was significantly different among all groups. $\overline{{\mathrm{SSDE}}_{\mathrm{w}}}$ (ATCM) was greater for moderate (13%) and mild (14%) groups. Increasing TSS increase the Dw and causes a decrease in CFw and $\overline{{\mathrm{SSDE}}_{\mathrm{w}}}$ (FTC), and can increase $\overline{{\mathrm{SSDE}}_{\mathrm{w}}}$ (ATCM) in some Dw ranges.


Assuntos
COVID-19 , Água , Humanos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Pulmão/diagnóstico por imagem
7.
Pathol Res Pract ; 250: 154789, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37741138

RESUMO

Among the leading causes of death globally has been cancer. Nearly 90% of all cancer-related fatalities are attributed to metastasis, which is the growing of additional malignant growths out of the original cancer origin. Therefore, a significant clinical need for a deeper comprehension of metastasis exists. Beginning investigations are being made on the function of microRNAs (miRNAs) in the metastatic process. Tiny non-coding RNAs called miRNAs have a crucial part in controlling the spread of cancer. Some miRNAs regulate migration, invasion, colonization, cancer stem cells' properties, the epithelial-mesenchymal transition (EMT), and the microenvironment, among other processes, to either promote or prevent metastasis. One of the most well-conserved and versatile miRNAs, miR-155 is primarily distinguished by overexpression in a variety of illnesses, including malignant tumors. It has been discovered that altered miR-155 expression is connected to a number of physiological and pathological processes, including metastasis. As a result, miR-155-mediated signaling pathways were identified as possible cancer molecular therapy targets. The current research on miR-155, which is important in controlling cancer cells' invasion, and metastasis as well as migration, will be summarized in the current work. The crucial significance of the lncRNA/circRNA-miR-155-mRNA network as a crucial regulator of carcinogenesis and a player in the regulation of signaling pathways or related genes implicated in cancer metastasis will be covered in the final section. These might provide light on the creation of fresh treatment plans for controlling cancer metastasis.

8.
Biomedicines ; 11(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37509723

RESUMO

Androgen deprivation therapy (ADT) remains the cornerstone of advanced prostate cancer treatment. However, the progression towards castration-resistant prostate cancer is inevitable, as the cancer cells reactivate androgen receptor signaling and adapt to the castrate state through autoregulation of the androgen receptor. Additionally, the upfront use of novel hormonal agents such as enzalutamide and abiraterone acetate may result in long-term toxicities and may trigger the selection of AR-independent cells through "Darwinian" treatment-induced pressure. Therefore, it is crucial to develop new strategies to overcome these challenges. Bipolar androgen therapy (BAT) is one such approach that has been devised based on studies demonstrating the paradoxical inhibitory effects of supraphysiologic testosterone on prostate cancer growth, achieved through a variety of mechanisms acting in concert. BAT involves rapidly alternating testosterone levels between supraphysiological and near-castrate levels over a period of a month, achieved through monthly intramuscular injections of testosterone plus concurrent ADT. BAT is effective and well-tolerated, improving quality of life and potentially re-sensitizing patients to previous hormonal therapies after progression. By exploring the mechanisms and clinical evidence for BAT, this review seeks to shed light on its potential as a promising new approach to prostate cancer treatment.

9.
Expert Opin Drug Deliv ; 20(7): 937-954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37294853

RESUMO

INTRODUCTION: During the last decades, the ever-increasing proportion of patients with cancer has been led to serious concerns worldwide. Therefore, the development and use of novel pharmaceuticals, like nanoparticles (NPs)-based drug delivery systems (DDSs), can be potentially effective in cancer therapy. AREA COVERED: Poly lactic-co-glycolic acid (PLGA) NPs, as a kind of bioavailable, biocompatible, and biodegradable polymers, have approved by the Food and Drug Administration (FDA) for some biomedical and pharmaceutical applications. PLGA is comprised of lactic acid (LA) and glycolic acid (GA) and their ratio could be controlled during various syntheses and preparation approaches. LA/GA ratio determines the stability and degradation time of PLGA; lower content of GA results in fast degradation. There are several approaches for preparing PLGA NPs that can affect their various aspects, such as size, solubility, stability, drug loading, pharmacokinetics, and pharmacodynamics, and so on. EXPERT OPINION: These NPs have indicated the controlled and sustained drug release in the cancer site and can use in passive and active (via surface modification) DDSs. This review aims to provide an overview of PLGA NPs, their preparation approach and physicochemical aspects, drug release mechanism and the cellular fate, DDSs for efficient cancer therapy, and status in the pharmaceutical industry and nanomedicine.


Assuntos
Nanopartículas , Neoplasias , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Poliglicólico/farmacologia , Nanomedicina , Glicóis , Sistemas de Liberação de Medicamentos/métodos , Ácido Láctico/química , Ácido Láctico/farmacologia , Neoplasias/tratamento farmacológico , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula
10.
Oxid Med Cell Longev ; 2023: 4999306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778212

RESUMO

Background: This study was aimed at determining the effects of alpha-lipoic acid on ionizing irradiation-induced oxidative damage and apoptosis in the brain of rats. Methods: The animals were exposed to whole-brain X-radiation with a 15 Gy single dose in the absence or presence of alpha-lipoic acid (200 mg/kg body weight) pretreatment for one week. The rats were divided into four groups (5 rats in each group): vehicle control, alpha-lipoic acid alone (ALA), radiation alone (RAD), and radiation plus alpha-lipoic acid (RAD+ALA). In the next stage, malondialdehyde (MDA), nitric oxide, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the brain tissue of the rats were measured. Furthermore, the Western blot analysis technique was performed to assess the NOX2, NOX4, and caspase-3 protein expression levels. Results: Twenty-four hours after the irradiation, MDA and nitric oxide levels in the irradiated rats were significantly higher than those in the control group (p < 0.001); however, the pretreatment with alpha-lipoic acid resulted in a significant reduction in these stress oxidative markers (p < 0.05). Moreover, a significant decrease in CAT, SOD, and GPx levels was observed in the radiation group alone compared to the control group (p < 0.01); in contrast, the activities of these antioxidant enzymes significantly increased in the radiation plus alpha-lipoic acid group in comparison to the radiation group alone (p < 0.05). The results of Western blot analysis revealed that NOX2, NOX4, and caspase-3 protein expressions significantly elevated in the irradiated rats compared to the control group (p < 0.001). The pretreatment with alpha-lipoic acid could significantly decrease the expression levels of NOX2, NOX4, and caspase-3 in comparison with the radiation group alone (p < 0.05). Conclusion: According to the obtained findings, it can be mentioned that the alpha-lipoic acid pretreatment could mitigate the ionizing irradiation-induced oxidative damage and apoptosis in the brain of the rats.


Assuntos
Ácido Tióctico , Ratos , Animais , Ácido Tióctico/uso terapêutico , Caspase 3/metabolismo , Óxido Nítrico/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo , Radiação Ionizante , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Encéfalo/metabolismo
11.
Curr Radiopharm ; 16(1): 57-63, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36056845

RESUMO

AIM: In the current study, we aimed to mitigate radiation-induced small intestinal toxicity using post-irradiation treatment with nano-micelle curcumin. BACKGROUND: Small intestine is one of the most radiosensitive organs within the body. Wholebody exposure to an acute dose of ionizing radiation may lead to severe injuries to this tissue and may even cause death after some weeks. OBJECTIVE: This study aimed to evaluate histopathological changes in the small intestine following whole-body irradiation and treatment with nanocurcumin. MATERIALS AND METHODS: Forty male Nordic Medical Research Institute mice were grouped into control, treatment with 100 mg/kg nano-micelle curcumin, whole-body irradiation with cobalt-60 gamma-rays (dose rate of 60 cGy/min and a single dose of 7 Gy), and treatment with 100 mg/kg nano-micelle curcumin 1 day after whole-body irradiation for 4 weeks. Afterward, all mice were sacrificed for histopathological evaluation of their small intestinal tissues. RESULTS: Irradiation led to severe damage to villi, crypts, glands as well as vessels, leading to bleeding. Administration of nano-micelle curcumin after whole-body irradiation showed a statistically significant improvement in radiation toxicity of the duodenum, jejunum and ileum (including a reduction in infiltration of polymorphonuclear cells, villi length shortening, goblet cells injury, Lieberkühn glands injury and bleeding). Although treatment with nano-micelle curcumin showed increased bleeding in the ileum for non-irradiated mice, its administration after irradiation was able to reduce radiation-induced bleeding in the ileum. CONCLUSION: Treatment with nano-micelle curcumin may be useful for mitigation of radiationinduced gastrointestinal system toxicity via suppression of inflammatory cells' infiltration and protection against villi and crypt shortening.


Assuntos
Curcumina , Masculino , Camundongos , Animais , Curcumina/farmacologia , Compostos Radiofarmacêuticos , Intestino Delgado/patologia , Intestino Delgado/efeitos da radiação , Íleo , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos da radiação
12.
Cancer Cell Int ; 22(1): 142, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366874

RESUMO

PURPOSE: 5-fluorouracil (5-FU), an effective chemotherapy drug, is commonly applied for colorectal cancer treatment. Nevertheless, its toxicity to normal tissues and the development of tumor resistance are the main obstacles to successful cancer chemotherapy and hence, its clinical application is limited. The use of resveratrol can increase 5-FU-induced cytotoxicity and mitigate the unwanted adverse effects. This study aimed to review the potential therapeutic effects of resveratrol in combination with 5-FU against colorectal cancer. METHODS: According to the PRISMA guideline, a comprehensive systematic search was carried out for the identification of relevant literature in four electronic databases of PubMed, Web of Science, Embase, and Scopus up to May 2021 using a pre-defined set of keywords in their titles and abstracts. We screened 282 studies in accordance with our inclusion and exclusion criteria. Thirteen articles were finally included in this systematic review. RESULTS: The in vitro findings showed that proliferation inhibition of colorectal cancer cells in the groups treated by 5-FU was remarkably higher than the untreated groups and the co-administration of resveratrol remarkably increased cytotoxicity induced by 5-FU. The in vivo results demonstrated a decrease in tumor growth of mice treated by 5-FU than the untreated group and a dramatic decrease was observed following combined treatment of resveratrol and 5-FU. It was also found that 5-FU alone and combined with resveratrol could regulate the cell cycle profile of colorectal cancer cells. Moreover, this chemotherapeutic agent induced the biochemical and histopathological changes in the cancerous cells/tissues and these alterations were synergized by resveratrol co-administration (for most of the cases), except for the inflammatory mediators. CONCLUSION: The results obtained from this systematic review demonstrated that co-administration of resveratrol could sensitize the colorectal cancer cells to 5-FU treatment via various mechanisms, including regulation of cell cycle distribution, oxidant, apoptosis, anti-inflammatory effects.

13.
Biofactors ; 48(3): 597-610, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35080781

RESUMO

Although the chemotherapeutic drug, doxorubicin, is commonly used to treat various malignant tumors, its clinical use is restricted because of its toxicity especially cardiotoxicity. The use of curcumin may alleviate some of the doxorubicin-induced cardiotoxic effects. Especially, using the nano-formulation of curcumin can overcome the poor bioavailability of curcumin and enhance its physicochemical properties regarding its efficacy. In this study, we systematically reviewed the potential cardioprotective effects of nano-curcumin against the doxorubicin-induced cardiotoxicity. A systematic search was accomplished based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for the identification of all relevant articles on "the role of nano-curcumin on doxorubicin-induced cardiotoxicity" in the electronic databases of Scopus, PubMed, and Web of Science up to July 2021. One hundred and sixty-nine articles were screened following a predefined set of inclusion and exclusion criteria. Ten eligible scientific papers were finally included in the present systematic review. The administration of doxorubicin reduced the body and heart weights of mice/rats compared to the control groups. In contrast, the combined treatment of doxorubicin and nano-curcumin increased the body and heart weights of animals compared with the doxorubicin-treated groups alone. Furthermore, doxorubicin could significantly induce the biochemical and histological changes in the cardiac tissue; however, coadministration of nano-curcumin formulation demonstrated a pattern opposite to the doxorubicin-induced changes. The coadministration of nano-curcumin alleviates the doxorubicin-induced cardiotoxicity through various mechanisms including antioxidant, anti-inflammatory, and antiapoptotic effects. Also, the cardioprotective effect of nano-curcumin formulation against doxorubicin-induced cardiotoxicity was higher than free curcumin.


Assuntos
Curcumina , Animais , Antioxidantes/farmacologia , Apoptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Curcumina/farmacologia , Curcumina/uso terapêutico , Doxorrubicina/toxicidade , Camundongos , Ratos
14.
Indian J Nucl Med ; 36(2): 134-139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385783

RESUMO

BACKGROUND: One of the treatment modalities for thyroid cancer and hyperthyroidism is radioiodine-131 (I-131) therapy. The use of this therapeutic modality is not completely safe and can lead to oxidative stress, eventually DNA damages. However, these radiation-induced damages can be reduced by antioxidants. This study aimed to investigate the potential radioprotective effects of melatonin and selenium nanoparticles (SeNPs) on DNA double-stranded breaks (DSBs) caused by I-131. MATERIALS AND METHODS: After obtaining informed consent, 6 ml blood was taken from each volunteer. The samples were divided into two general groups of control (without I-131) and with I-131. Each group was also divided into three subgroups, including without antioxidant, melatonin, and SeNPs. The samples of control group were incubated for 2 h after adding the antioxidants. The samples of I-131 group were first incubated for 1 h with the antioxidants and then the samples re-incubated for another 1 h after adding the I-131. Then, the samples were prepared for γH2AX assay. RESULTS: The findings showed that after 1 h of incubation with 20 µCi I-131/2 mL, the DSB levels increased by 102.9% in comparison with the control group. In the I-131 group, there were significant reductions of the DSB levels after incubation with melatonin (P < 0.001) and SeNPs (P < 0.001) in comparison with the without antioxidant subgroup. Furthermore, the DSB levels at the melatonin + I-131 and the SeNPs + I-131 subgroups decreased to 38% and 30%, respectively, compared to the I-131 subgroup. CONCLUSION: According to the obtained findings, it can be concluded that the use of melatonin and SeNPs (as radioprotector agents) can reduce the DSB levels induced by I-131 in peripheral lymphocytes.

15.
Life Sci ; 269: 119020, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33450258

RESUMO

The conventional cancer treatment modalities such as radiotherapy and chemotherapy suffer from several limitations; hence, their efficiency needs to be improved with other complementary modalities. Hyperthermia, as an adjuvant therapeutic modality for cancer, can result in a synergistic effect on radiotherapy (radiosensitizer) and chemotherapy (chemosensitizer). Conventional hyperthermia methods affect both tumoral and healthy tissues and have low specificity. In addition, a temperature gradient generates in the tissues situated along the path of the heat source, which is a more serious for deep-seated tumors. Nanoparticles (NPs)-induced hyperthermia can resolve these drawbacks through localization around/within tumoral tissue and generating local hyperthermia. Although there are several review articles dealing with NPs-induced hyperthermia, lack of a paper discussing the combination of NPs-induced hyperthermia with the conventional chemotherapy or radiotherapy is tangible. Accordingly, the main focus of the current paper is to summarize the principles of NPs-induced hyperthermia and more importantly its synergic effects on the conventional chemotherapy or radiotherapy. The heat-producing nanostructures such as gold NPs, iron oxide NPs, and carbon NPs, as well as the non-heat-producing nanostructures, such as lipid-based, polymeric, and silica-based NPs, as the carrier for heat-producing NPs, are discussed and their pros and cons highlighted.


Assuntos
Hipertermia Induzida , Nanopartículas/química , Neoplasias/terapia , Animais , Terapia Combinada , Humanos , Lipídeos/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia
16.
Curr Drug Res Rev ; 12(1): 72-79, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32578524

RESUMO

AIMS: The current study aimed to investigate the potential role of melatonin in the mitigation of radiation-induced gastrointestinal injury. BACKGROUND: Organs of the gastrointestinal system such as the intestines, colon, duodenum, ileum etc. are sensitive to ionizing radiation. Mitigation of radiation-induced gastrointestinal injury is an interesting topic in radiobiology and a life-saving approach for exposed persons after a radiation event or improving the quality of life of radiotherapy patients. OBJECTIVE: The study aimed to find the possible mitigation effect of melatonin on radiation-induced damage to the small and large intestines. METHODS: 40 male mice were randomly assigned into four groups namely G1: control, G2: melatonin treatment, G3: whole-body irradiation, and G4: melatonin treatment after whole-body irradiation. A cobalt-60 gamma-ray source was used to deliver 7 Gy to the whole body. 100 mg/kg melatonin was administered orally 24 h after irradiation and continued for 5 days. Thirty days after irradiation, histopathological evaluations were performed. RESULTS: The whole-body irradiation led to remarkable inflammation, villi shortening, apoptosis and damage to goblet cells of the small intestine. Furthermore, moderate to severe inflammation, apoptosis, congestion, crypt injury and goblet cell damage were reported for the colon. Treatment with melatonin after whole-body irradiation led to significant mitigation of radiation toxicity in both small and large intestines. CONCLUSION: Melatonin could mitigate intestinal injury following whole-body exposure to radiation. Treatment with melatonin after an accidental exposure to radiation may increase survival via mitigation of damages to radiosensitive organs, including the gastrointestinal system.


Assuntos
Inflamação/prevenção & controle , Melatonina/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Radioisótopos de Cobalto , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Trato Gastrointestinal/efeitos da radiação , Inflamação/etiologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Intestino Delgado/efeitos da radiação , Masculino , Camundongos , Irradiação Corporal Total/efeitos adversos
17.
Prog Biomater ; 9(1-2): 45-64, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32474882

RESUMO

Wound is among the most common injuries. A suitable wound dressing has a significant effect on the healing process. In this study, a porous wound dressing was prepared using poly (lactic acid) (PLA) and two plasticizers, polyethylene glycol (PEG) and triacetin (TA), through solvent casting method. For antibacterial activities, metronidazole was incorporated in the structure. The morphology was investigated by scanning electron microscopy (SEM). In addition, the effect of plasticizers ratio on porosity growth was evaluated. It was also observed that each had a unique effect on the structure's porosity. The mechanical properties confirmed the effect of both plasticizers on increasing polymer softness and flexibility, and the most similar formulations to human skin in terms of mechanical properties were introduced. According to the results, TA had stronger effect on mechanical properties. The differential scanning calorimetry (DSC) showed the effect of increasing plasticizer concentration on crystalline structure and Tm reduction of PLA. The water contact angle measurement showed that both plasticizers enhanced hydrophilic characteristics of PLA, and this effect was weaker in PEG-containing formulations. The in vitro degradation study showed biodegradability, as a desirable property in wound dressing. Results suggested that higher degradation can be obtained by both plasticizers at the same time. The results also showed that PEG was more effective in enhancing water absorbency. In vitro drug release study indicated an explosive release and the highest amount was 85% over 186 h. The antibacterial activity test confirmed the effectiveness of the drug in preventing bacterial growth in the drug-containing formulations, while it showed the antibacterial property of TA. MTT assay was performed and the cellular toxicity of the formulations was checked and those that revealed the least toxicity were introduced.

18.
Sci Rep ; 10(1): 6129, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273549

RESUMO

To eliminate the microbial infection from an injury site, various modalities have been developed such as dressings and human skin substitutes. However, the high amount of reactive oxygen species, microbial infection, and damaging extracellular matrix remain as the main challenges for the wound healing process. In this study, for the first time, green synthesized silver nanoparticles (AgNPs) using Teucrium polium extract were embedded in poly lactic acid/poly ethylene glycol (PLA/PEG) film to provide absorbable wound dressing, with antioxidant and antibacterial features. The physicochemical analysis demonstrated, production of AgNPs with size approximately 32.2 nm and confirmed the presence of phytoconstituents on their surface. The antibacterial assessments exhibited a concentration-dependent sensitivity of Staphylococcus aureus and Pseudomonas aeruginosa toward biosynthesized AgNPs, which showed a suitable safety profile in human macrophage cells. Furthermore, oxidant scavenging assays demonstrated exploitation of plant extract as a reducing agent, endows antioxidant activity to biogenic AgNPs. The formation of PLA/PEG nanofilm and entrapment of AgNPs into their matrix were clearly confirmed by scanning electron microscopy. More importantly, antibacterial examination demonstrated that the introduction of biogenic AgNPs into PLA/PEG nanofibers led to complete growth inhibition of P. aeruginosa and S. aureus. In summary, the simultaneous antioxidant activity and antimicrobial activity of the novel biogenic AgNPs/PLA/PEG nanofilm showed its potential for application as wound dressing.


Assuntos
Antibacterianos/síntese química , Antioxidantes/síntese química , Nanopartículas Metálicas/química , Cicatrização , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Antioxidantes/efeitos adversos , Antioxidantes/farmacologia , Humanos , Lactatos/química , Macrófagos/efeitos dos fármacos , Polietilenoglicóis/química , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Staphylococcus aureus/efeitos dos fármacos
19.
J Cancer Res Ther ; 15(5): 1018-1023, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31603104

RESUMO

INTRODUCTION: This study aimed to calculate the photon and neutron doses received to the contralateral breast (CB) during breast cancer radiotherapy for various field sizes in the presence of a physical wedge. MATERIALS AND METHODS: Varian 2100 C/D linear accelerator was simulated using a MCNP4C Monte Carlo code. Then, a phantom of real female chest was simulated and the treatment planning was carried out on tumoral breast (left breast). Finally, the received photon and neutron doses to CB (right breast) were calculated in the presence of a physical wedge for 18 MV photon beam energy. These calculations were performed for different field sizes including 11 cm × 13 cm, 11 cm × 17 cm, and 11 cm × 21 cm. RESULTS: The findings showed that the received doses (both of the photon and neutron) to CB in the presence of a physical wedge for 11 cm × 13 cm, 11 cm × 17 cm, and 11 cm × 21 cm field sizes were 9.87%, 12.91%, and 27.37% of the prescribed dose, respectively. In addition, the results showed that the received photon and neutron doses to CB increased with increment in the field size. CONCLUSION: From the results of this study, it is concluded that the received photon and neutron doses to CB in the presence of a physical wedge is relatively more, and therefore, they should be reduced to as low as possible. Therefore, using a dynamic wedge instead of a physical wedge or field-in-field technique is suggested.


Assuntos
Neoplasias da Mama/radioterapia , Mama/efeitos da radiação , Nêutrons/uso terapêutico , Fótons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Feminino , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica
20.
Iran J Med Sci ; 43(6): 645-652, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30510341

RESUMO

BACKGROUND: The search for potent radioprotective agents for the amelioration of radiation side effect is an important aim in radiobiology. The present study aimed to evaluate the effects of curcumin and seleno-L-methionine against radiation-induced micronucleus formation in rat bone marrow. METHODS: In total, 40 male rats were divided into 8 groups (n=5 each), including control, curcumin or seleno-L-methionine treated alone or in combination, 2 Gy irradiation, irradiation of treated groups with curcumin or seleno-L-methionine or their combination. Curcumin was administrated orally and seleno-L-methionine was injected intraperitoneally 24 hours before irradiation. The frequency of micronucleated normochromatic erythrocytes (MnNCEs) and micronucleated polychromatic erythrocytes (MnPCEs) was scored in 5,000 polychromatic erythrocytes (PCEs) and the cell proliferation ratio [(PCE/(PCE+NCE); NCE=normochromatic erythrocytes] was calculated for each treatment group. Data were analyzed by the SPSS software version 16.0 and P<0.05 was considered as statistically significant differences. RESULTS: Pretreatment with curcumin and seleno-L-methionine before irradiation reduced the frequency of MnPCEs and MnNCEs (P=0.01) and increased the cell proliferation ratio. Moreover, the results showed that this pretreatment reduced the frequency of MnPCEs with a protection factor (PF) of 1.2 and 1.6, respectively. The combination of curcumin and seleno-L-methionine in reducing MnPCEs and MnNCEs was not more effective than each agent alone, while improved cell proliferation ratio. CONCLUSION: Both curcumin and seleno-L-methionine showed potent protection against radiation induced MN in bone marrow cells. The combination of the two agents further ameliorates this activity, thus leading to improve bone marrow protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA