Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Radiol ; 178: 111654, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089057

RESUMO

PURPOSE: The tumor microenvironment (TME) plays a crucial role in tumor progression and treatment response. Radiomics offers a non-invasive approach to studying the TME by extracting quantitative features from medical images. In this study, we present a novel approach to assess the stability and discriminative ability of radiomics features in the TME of vestibular schwannoma (VS). METHODS: Magnetic Resonance Imaging (MRI) data from 242 VS patients were analyzed, including contrast-enhanced T1-weighted (ceT1) and high-resolution T2-weighted (hrT2) sequences. Radiomics features were extracted from concentric peri-tumoral regions of varying sizes. The intraclass correlation coefficient (ICC) was used to assess feature stability and discriminative ability, establishing quantile thresholds for ICCmin and ICCmax. RESULTS: The identified thresholds for ICCmin and ICCmax were 0.45 and 0.72, respectively. Features were classified into four categories: stable and discriminative (S-D), stable and non-discriminative (S-ND), unstable and discriminative (US-D), and unstable and non-discriminative (US-ND). Different feature groups exhibited varying proportions of S-D features across ceT1 and hrT2 sequences. The similarity of S-D features between ceT1 and hrT2 sequences was evaluated using Jaccard's index, with a value of 0.78 for all feature groups which is ranging from 0.68 (intensity features) to 1.00 (Neighbouring Gray Tone Difference Matrix (NGTDM) features). CONCLUSIONS: This study provides a framework for identifying stable and discriminative radiomics features in the TME, which could serve as potential biomarkers or predictors of patient outcomes, ultimately improving the management of VS patients.


Assuntos
Imageamento por Ressonância Magnética , Neuroma Acústico , Radiômica , Humanos , Meios de Contraste , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroma Acústico/diagnóstico por imagem , Estudos Retrospectivos , Microambiente Tumoral
2.
J Imaging Inform Med ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080159

RESUMO

Geometric distortions in brain MRI images arising from susceptibility artifacts at air-tissue interfaces pose a significant challenge for high-precision radiation therapy modalities like stereotactic radiosurgery, necessitating sub-millimeter accuracy. To achieve this goal, we developed AutoCorNN, an unsupervised physics-aware deep-learning model for correcting geometric distortions. Two publicly available datasets, the MPI-Leipzig Mind-Brain-Body with 318 subjects, and the Vestibular Schwannoma-SEG dataset, encompassing 242 patients were utilized. AutoCorNN integrates two 2D convolutional encoder-decoder neural networks with the forward physical model of MRI signal generation to predict undistorted MR and field map images from distorted MR input. The network is trained in an unsupervised manner by minimizing the mean absolute error between the measured and estimated k-space data, without requiring ground truth images during training or deployment. The model was evaluated on vestibular schwannoma cases. AutoCorNN achieved a peak signal-to-noise ratio (PSNR) of 41.35 ± 0.02 dB, a root mean square error (RMSE) of 0.02 ± 0.003, and a structural similarity index (SSIM) of 0.99 ± 0.02 outperforming uncorrected and B0-mapping correction methods. Geometric distortions of about 1.6 mm were observed at the air-tissue interfaces at the air canal and nasal cavity borders. Geometrically, distortion correction increased the target volume from 3.12 ± 0.52 cc to 3.84 ± 0.54 cc. Dosimetrically, AutoCorNN improved target coverage (0.96 ± 0.01 to 0.97 ± 0.02), conformity index (0.92 ± 0.03 to 0.94 ± 0.03), and reduced dose gradients outside the target. AutoCorNN achieves accurate geometric distortion correction comparable to conventional iterative methods while offering substantial computational acceleration, enabling precise target delineation and conformal dose delivery for improved radiation therapy outcomes.

3.
Rep Pract Oncol Radiother ; 24(6): 606-613, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660053

RESUMO

AIM: Determine the 1) effectiveness of correction for gradient-non-linearity and susceptibility effects on both QUASAR GRID3D and CIRS phantoms; and 2) the magnitude and location of regions of residual distortion before and after correction. BACKGROUND: Using magnetic resonance imaging (MRI) as a primary dataset for radiotherapy planning requires correction for geometrical distortion and non-uniform intensity. MATERIALS AND METHODS: Phantom Study: MRI, computed tomography (CT) and cone beam CT images of QUASAR GRID3D and CIRS head phantoms were acquired. Patient Study: Ten patients were MRI-scanned for stereotactic radiosurgery treatment. Correction algorithm: Two magnitude and one phase difference image were acquired to create a field map. A MATLAB program was used to calculate geometrical distortion in the frequency encoding direction, and 3D interpolation was applied to resize it to match 3D T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) images. MPRAGE images were warped according to the interpolated field map in the frequency encoding direction. The corrected and uncorrected MRI images were fused, deformable registered, and a difference distortion map generated. RESULTS: Maximum deviation improvements: GRID3D , 0.27 mm y-direction, 0.07 mm z-direction, 0.23 mm x-direction. CIRS, 0.34 mm, 0.1 mm and 0.09 mm at 20-, 40- and 60-mm diameters from the isocenter. Patient data show corrections from 0.2 to 1.2 mm, based on location. The most-distorted areas are around air cavities, e.g. sinuses. CONCLUSIONS: The phantom data show the validity of our fast distortion correction algorithm. Patient-specific data are acquired in <2 min and analyzed and available for planning in less than a minute.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA