Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5015, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676778

RESUMO

The loss of functional insulin-producing ß-cells is a hallmark of diabetes. Mammalian sterile 20-like kinase 1 (MST1) is a key regulator of pancreatic ß-cell death and dysfunction; its deficiency restores functional ß-cells and normoglycemia. The identification of MST1 inhibitors represents a promising approach for a ß-cell-protective diabetes therapy. Here, we identify neratinib, an FDA-approved drug targeting HER2/EGFR dual kinases, as a potent MST1 inhibitor, which improves ß-cell survival under multiple diabetogenic conditions in human islets and INS-1E cells. In a pre-clinical study, neratinib attenuates hyperglycemia and improves ß-cell function, survival and ß-cell mass in type 1 (streptozotocin) and type 2 (obese Leprdb/db) diabetic mouse models. In summary, neratinib is a previously unrecognized inhibitor of MST1 and represents a potential ß-cell-protective drug with proof-of-concept in vitro in human islets and in vivo in rodent models of both type 1 and type 2 diabetes.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Células Secretoras de Insulina/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Substâncias Protetoras/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
2.
ACS Cent Sci ; 3(12): 1322-1328, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29296673

RESUMO

Dysregulation of protein tyrosine phosphorylation has been implicated in a number of human diseases, including cancer, diabetes, and neurodegenerative diseases. As a result of their essential role in regulating protein tyrosine phosphorylation levels, protein tyrosine phosphatases (PTPs) have emerged as important yet challenging therapeutic targets. Here we report on the development and application of a glutathione-responsive motif to facilitate the efficient intracellular delivery of a novel class of selenosulfide phosphatase inhibitors for the selective active site directed inhibition of the targeted PTP by selenosulfide exchange with the active site cysteine. The strategy leverages the large difference in extracellular and intracellular glutathione levels to deliver selenosulfide phosphatase inhibitors to cells. As an initial exploration of the prodrug platform and the corresponding selenosulfide covalent inhibitor class, potent and selective inhibitors were developed for two therapeutically relevant PTP targets: the Mycobacterium tuberculosis virulence factor mPTPA and the CNS-specific tyrosine phosphatase, striatal-enriched protein tyrosine phosphatase (STEP). The lead selenosulfide inhibitors enable potent and selective inhibition of their respective targets over a panel of human PTPs and a representative cysteine protease. Kinetic parameters of the inhibitors were characterized, including reversibility of inhibition and rapid rate of GSH exchange at intracellular GSH concentrations. Additionally, active site covalent inhibitor-labeling with an mPTPA inhibitor was rigorously confirmed by mass spectrometry, and cellular activity was demonstrated with a STEP prodrug inhibitor in cortical neurons.

3.
J Neurochem ; 136(2): 285-94, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26316048

RESUMO

Brain-derived neurotrophic factor (BDNF) regulates synaptic strengthening and memory consolidation, and altered BDNF expression is implicated in a number of neuropsychiatric and neurodegenerative disorders. BDNF potentiates N-methyl-D-aspartate receptor function through activation of Fyn and ERK1/2. STriatal-Enriched protein tyrosine Phosphatase (STEP) is also implicated in many of the same disorders as BDNF but, in contrast to BDNF, STEP opposes the development of synaptic strengthening. STEP-mediated dephosphorylation of the NMDA receptor subunit GluN2B promotes internalization of GluN2B-containing NMDA receptors, while dephosphorylation of the kinases Fyn, Pyk2, and ERK1/2 leads to their inactivation. Thus, STEP and BDNF have opposing functions. In this study, we demonstrate that manipulation of BDNF expression has a reciprocal effect on STEP61 levels. Reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. Moreover, a newly identified STEP inhibitor reverses the biochemical and motor abnormalities in BDNF(+/-) mice. In contrast, increased BDNF signaling upon treatment with a tropomyosin receptor kinase B agonist results in degradation of STEP61 and a subsequent increase in the tyrosine phosphorylation of STEP substrates in cultured neurons and in mouse frontal cortex. These findings indicate that BDNF-tropomyosin receptor kinase B signaling leads to degradation of STEP61 , while decreased BDNF expression results in increased STEP61 activity. A better understanding of the opposing interaction between STEP and BDNF in normal cognitive functions and in neuropsychiatric disorders will hopefully lead to better therapeutic strategies. Altered expression of BDNF and STEP61 has been implicated in several neurological disorders. BDNF and STEP61 are known to regulate synaptic strengthening, but in opposite directions. Here, we report that reduced BDNF signaling leads to elevation of STEP61 both in BDNF(+/-) mice and after acute BDNF knockdown in cortical cultures. In contrast, activation of TrkB receptor results in the degradation of STEP61 and reverses hyperlocomotor activity in BDNF(+/-) mice. Moreover, inhibition of STEP61 by TC-2153 is sufficient to enhance the Tyr phosphorylation of STEP substrates and also reverses hyperlocomotion in BDNF(+/-) mice. These findings give us a better understanding of the regulation of STEP61 by BDNF in normal cognitive functions and in neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação para Baixo/fisiologia , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Benzotiepinas/farmacologia , Encéfalo/citologia , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião de Mamíferos , Feminino , Flavonas/farmacologia , Leupeptinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Neurônios/efeitos dos fármacos , Proteínas Tirosina Fosfatases/genética , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
4.
PLoS Biol ; 12(8): e1001923, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25093460

RESUMO

STEP (STriatal-Enriched protein tyrosine Phosphatase) is a neuron-specific phosphatase that regulates N-methyl-D-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking, as well as ERK1/2, p38, Fyn, and Pyk2 activity. STEP is overactive in several neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD). The increase in STEP activity likely disrupts synaptic function and contributes to the cognitive deficits in AD. AD mice lacking STEP have restored levels of glutamate receptors on synaptosomal membranes and improved cognitive function, results that suggest STEP as a novel therapeutic target for AD. Here we describe the first large-scale effort to identify and characterize small-molecule STEP inhibitors. We identified the benzopentathiepin 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (known as TC-2153) as an inhibitor of STEP with an IC50 of 24.6 nM. TC-2153 represents a novel class of PTP inhibitors based upon a cyclic polysulfide pharmacophore that forms a reversible covalent bond with the catalytic cysteine in STEP. In cell-based secondary assays, TC-2153 increased tyrosine phosphorylation of STEP substrates ERK1/2, Pyk2, and GluN2B, and exhibited no toxicity in cortical cultures. Validation and specificity experiments performed in wild-type (WT) and STEP knockout (KO) cortical cells and in vivo in WT and STEP KO mice suggest specificity of inhibitors towards STEP compared to highly homologous tyrosine phosphatases. Furthermore, TC-2153 improved cognitive function in several cognitive tasks in 6- and 12-mo-old triple transgenic AD (3xTg-AD) mice, with no change in beta amyloid and phospho-tau levels.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/enzimologia , Inibidores Enzimáticos/uso terapêutico , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Benzotiepinas/farmacologia , Benzotiepinas/uso terapêutico , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Córtex Cerebral/patologia , Transtornos Cognitivos/complicações , Transtornos Cognitivos/patologia , Cisteína/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/química , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Especificidade por Substrato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA