Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Clin Invest ; 134(10)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530357

RESUMO

Despite widespread utilization of immunotherapy, treating immune-cold tumors remains a challenge. Multiomic analyses and experimental validation identified the OTUD4/CD73 proteolytic axis as a promising target in treating immune-suppressive triple negative breast cancer (TNBC). Mechanistically, deubiquitylation of CD73 by OTUD4 counteracted its ubiquitylation by TRIM21, resulting in CD73 stabilization inhibiting tumor immune responses. We further demonstrated the importance of TGF-ß signaling for orchestrating the OTUD4/CD73 proteolytic axis within tumor cells. Spatial transcriptomics profiling discovered spatially resolved features of interacting malignant and immune cells pertaining to expression levels of OTUD4 and CD73. In addition, ST80, a newly developed inhibitor, specifically disrupted proteolytic interaction between CD73 and OTUD4, leading to reinvigoration of cytotoxic CD8+ T cell activities. In preclinical models of TNBC, ST80 treatment sensitized refractory tumors to anti-PD-L1 therapy. Collectively, our findings uncover what we believe to be a novel strategy for targeting the immunosuppressive OTUD4/CD73 proteolytic axis in treating immune-suppressive breast cancers with the inhibitor ST80.


Assuntos
5'-Nucleotidase , Proteólise , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , 5'-Nucleotidase/genética , 5'-Nucleotidase/imunologia , 5'-Nucleotidase/antagonistas & inibidores , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ubiquitinação , Proteases Específicas de Ubiquitina
2.
Proc Natl Acad Sci U S A ; 120(25): e2218896120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37327313

RESUMO

Programmed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis. Given the role of 15-lipoxygenase (15LOX) association with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) in initiating ferroptosis-specific peroxidation of polyunsaturated PE, we propose a strategy of discovering antiferroptotic agents as inhibitors of the 15LOX/PEBP1 catalytic complex rather than 15LOX alone. Here we designed, synthesized, and tested a customized library of 26 compounds using biochemical, molecular, and cell biology models along with redox lipidomic and computational analyses. We selected two lead compounds, FerroLOXIN-1 and 2, which effectively suppressed ferroptosis in vitro and in vivo without affecting the biosynthesis of pro-/anti-inflammatory lipid mediators in vivo. The effectiveness of these lead compounds is not due to radical scavenging or iron-chelation but results from their specific mechanisms of interaction with the 15LOX-2/PEBP1 complex, which either alters the binding pose of the substrate [eicosatetraenoyl-PE (ETE-PE)] in a nonproductive way or blocks the predominant oxygen channel thus preventing the catalysis of ETE-PE peroxidation. Our successful strategy may be adapted to the design of additional chemical libraries to reveal new ferroptosis-targeting therapeutic modalities.


Assuntos
Ferroptose , Proteína de Ligação a Fosfatidiletanolamina , Glutationa/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , Lipídeos , Oxirredução , Proteína de Ligação a Fosfatidiletanolamina/antagonistas & inibidores
3.
Endocr Rev ; 44(3): 474-491, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36503956

RESUMO

The classical paradigm of G protein-coupled receptor (GPCR) signaling via G proteins is grounded in a view that downstream responses are relatively transient and confined to the cell surface, but this notion has been revised in recent years following the identification of several receptors that engage in sustained signaling responses from subcellular compartments following internalization of the ligand-receptor complex. This phenomenon was initially discovered for the parathyroid hormone (PTH) type 1 receptor (PTH1R), a vital GPCR for maintaining normal calcium and phosphate levels in the body with the paradoxical ability to build or break down bone in response to PTH binding. The diverse biological processes regulated by this receptor are thought to depend on its capacity to mediate diverse modes of cyclic adenosine monophosphate (cAMP) signaling. These include transient signaling at the plasma membrane and sustained signaling from internalized PTH1R within early endosomes mediated by PTH. Here we discuss recent structural, cell signaling, and in vivo studies that unveil potential pharmacological outputs of the spatial versus temporal dimension of PTH1R signaling via cAMP. Notably, the combination of molecular dynamics simulations and elastic network model-based methods revealed how precise modulation of PTH signaling responses is achieved through structure-encoded allosteric coupling within the receptor and between the peptide hormone binding site and the G protein coupling interface. The implications of recent findings are now being explored for addressing key questions on how location bias in receptor signaling contributes to pharmacological functions, and how to drug a difficult target such as the PTH1R toward discovering nonpeptidic small molecule candidates for the treatment of metabolic bone and mineral diseases.


Assuntos
Proteína Relacionada ao Hormônio Paratireóideo , Hormônio Paratireóideo , Humanos , Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais/fisiologia , Receptores Acoplados a Proteínas G , AMP Cíclico/metabolismo
4.
J Chem Inf Model ; 62(17): 4175-4190, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36001481

RESUMO

The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene encodes a tightly regulated dual-specificity phosphatase that serves as the master regulator of PI3K/AKT/mTOR signaling. The carboxy-terminal tail (CTT) is key to regulation and harbors multiple phosphorylation sites (Ser/Thr residues 380-385). CTT phosphorylation suppresses the phosphatase activity by inducing a stable, closed conformation. However, little is known about the mechanisms of phosphorylation-induced CTT-deactivation dynamics. Using explicit solvent microsecond molecular dynamics simulations, we show that CTT phosphorylation leads to a partially collapsed conformation, which alters the secondary structure of PTEN and induces long-range conformational rearrangements that encompass the active site. The active site rearrangements prevent localization of PTEN to the membrane, precluding lipid phosphatase activity. Notably, we have identified phosphorylation-induced allosteric coupling between the interdomain region and a hydrophobic site neighboring the active site in the phosphatase domain. Collectively, the results provide a mechanistic understanding of CTT phosphorylation dynamics and reveal potential druggable allosteric sites in a previously believed clinically undruggable protein.


Assuntos
PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Simulação de Dinâmica Molecular , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Transdução de Sinais
5.
Cell ; 185(4): 690-711.e45, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35108499

RESUMO

Single-cell (sc)RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular states and transitions at unprecedented resolution. Fully exploiting these data, however, requires kinetic models capable of unveiling governing regulatory functions. Here, we introduce an analytical framework dynamo (https://github.com/aristoteleo/dynamo-release), which infers absolute RNA velocity, reconstructs continuous vector fields that predict cell fates, employs differential geometry to extract underlying regulations, and ultimately predicts optimal reprogramming paths and perturbation outcomes. We highlight dynamo's power to overcome fundamental limitations of conventional splicing-based RNA velocity analyses to enable accurate velocity estimations on a metabolically labeled human hematopoiesis scRNA-seq dataset. Furthermore, differential geometry analyses reveal mechanisms driving early megakaryocyte appearance and elucidate asymmetrical regulation within the PU.1-GATA1 circuit. Leveraging the least-action-path method, dynamo accurately predicts drivers of numerous hematopoietic transitions. Finally, in silico perturbations predict cell-fate diversions induced by gene perturbations. Dynamo, thus, represents an important step in advancing quantitative and predictive theories of cell-state transitions.


Assuntos
Análise de Célula Única , Transcriptoma/genética , Algoritmos , Feminino , Regulação da Expressão Gênica , Células HL-60 , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Cinética , Modelos Biológicos , RNA Mensageiro/metabolismo , Coloração e Rotulagem
6.
Sci Signal ; 14(703): eabc5944, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34609896

RESUMO

The parathyroid hormone (PTH) type 1 receptor (PTHR) is a class B G protein­coupled receptor (GPCR) that regulates mineral ion, vitamin D, and bone homeostasis. Activation of the PTHR by PTH induces both transient cell surface and sustained endosomal cAMP production. To address whether the spatial (location) or temporal (duration) dimension of PTHR-induced cAMP encodes distinct biological outcomes, we engineered a biased PTHR ligand (PTH7d) that elicits cAMP production at the plasma membrane but not at endosomes. PTH7d stabilized a unique active PTHR conformation that mediated sustained cAMP signaling at the plasma membrane due to impaired ß-arrestin coupling to the receptor. Experiments in cells and mice revealed that sustained cAMP production by cell surface PTHR failed to mimic the pharmacological effects of sustained endosomal cAMP production on the abundance of the rate-limiting hydroxylase catalyzing the formation of active vitamin D, as well as increases in circulating active vitamin D and Ca2+ and in bone formation in mice. Thus, similar amounts of cAMP generated by PTHR for similar lengths of time in different cellular locations, plasma membrane and endosomes, mediate distinct physiological responses. These results unveil subcellular signaling location as a means to achieve specificity in PTHR-mediated biological outcomes and raise the prospect of rational drug design based upon spatiotemporal manipulation of GPCR signaling.


Assuntos
Hormônio Paratireóideo , Receptores de Hormônios Paratireóideos , AMP Cíclico
7.
Biomedicines ; 9(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199621

RESUMO

The dopamine transporter (DAT) serves a critical role in controlling dopamine (DA)-mediated neurotransmission by regulating the clearance of DA from the synapse and extrasynaptic regions and thereby modulating DA action at postsynaptic DA receptors. Major drugs of abuse such as amphetamine and cocaine interact with DATs to alter their actions resulting in an enhancement in extracellular DA concentrations. We previously identified a novel allosteric site in the DAT and the related human serotonin transporter that lies outside the central orthosteric substrate- and cocaine-binding pocket. Here, we demonstrate that the dopaminergic psychostimulant sydnocarb is a ligand of this novel allosteric site. We identified the molecular determinants of the interaction between sydnocarb and DAT at the allosteric site using molecular dynamics simulations. Biochemical-substituted cysteine scanning accessibility experiments have supported the computational predictions by demonstrating the occurrence of specific interactions between sydnocarb and amino acids within the allosteric site. Functional dopamine uptake studies have further shown that sydnocarb is a noncompetitive inhibitor of DAT in accord with the involvement of a site different from the orthosteric site in binding this psychostimulant. Finally, DA uptake studies also demonstrate that sydnocarb affects the interaction of DAT with both cocaine and amphetamine. In summary, these studies further strengthen the prospect that allosteric modulation of DAT activity could have therapeutic potential.

8.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067535

RESUMO

We recently discovered an anti-ferroptotic mechanism inherent to M1 macrophages whereby high levels of NO● suppressed ferroptosis via inhibition of hydroperoxy-eicosatetraenoyl-phosphatidylethanolamine (HpETE-PE) production by 15-lipoxygenase (15LOX) complexed with PE-binding protein 1 (PEBP1). However, the mechanism of NO● interference with 15LOX/PEBP1 activity remained unclear. Here, we use a biochemical model of recombinant 15LOX-2 complexed with PEBP1, LC-MS redox lipidomics, and structure-based modeling and simulations to uncover the mechanism through which NO● suppresses ETE-PE oxidation. Our study reveals that O2 and NO● use the same entry pores and channels connecting to 15LOX-2 catalytic site, resulting in a competition for the catalytic site. We identified residues that direct O2 and NO● to the catalytic site, as well as those stabilizing the esterified ETE-PE phospholipid tail. The functional significance of these residues is supported by in silico saturation mutagenesis. We detected nitrosylated PE species in a biochemical system consisting of 15LOX-2/PEBP1 and NO● donor and in RAW264.7 M2 macrophages treated with ferroptosis-inducer RSL3 in the presence of NO●, in further support of the ability of NO● to diffuse to, and react at, the 15LOX-2 catalytic site. The results provide first insights into the molecular mechanism of repression of the ferroptotic Hp-ETE-PE production by NO●.


Assuntos
Ferroptose/fisiologia , Óxido Nítrico/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Morte Celular/fisiologia , Humanos , Lipidômica , Macrófagos/metabolismo , Simulação de Dinâmica Molecular , Oxirredução , Fosfatidiletanolaminas , Fosfolipídeos/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33361152

RESUMO

The balance between NLRP3 inflammasome activation and mitophagy is essential for homeostasis and cellular health, but this relationship remains poorly understood. Here we found that interleukin-1α (IL-1α)-deficient macrophages have reduced caspase-1 activity and diminished IL-1ß release, concurrent with reduced mitochondrial damage, suggesting a role for IL-1α in regulating this balance. LPS priming of macrophages induced pro-IL-1α translocation to mitochondria, where it directly interacted with mitochondrial cardiolipin (CL). Computational modeling revealed a likely CL binding motif in pro-IL-1α, similar to that found in LC3b. Thus, binding of pro-IL-1α to CL in activated macrophages may interrupt CL-LC3b-dependent mitophagy, leading to enhanced Nlrp3 inflammasome activation and more robust IL-1ß production. Mutation of pro-IL-1α residues predicted to be involved in CL binding resulted in reduced pro-IL-1α-CL interaction, a reduction in NLRP3 inflammasome activity, and increased mitophagy. These data identify a function for pro-IL-1α in regulating mitophagy and the potency of NLRP3 inflammasome activation.


Assuntos
Cardiolipinas/metabolismo , Interleucina-1alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Autofagia , Cardiolipinas/fisiologia , Caspase 1/metabolismo , Feminino , Células HEK293 , Humanos , Inflamassomos/metabolismo , Interleucina-1alfa/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Espécies Reativas de Oxigênio/metabolismo
10.
Prog Biophys Mol Biol ; 160: 104-120, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32866476

RESUMO

The eukaryotic chaperonin TRiC/CCT plays a major role in assisting the folding of many proteins through an ATP-driven allosteric cycle. Recent structures elucidated by cryo-electron microscopy provide a broad view of the conformations visited at various stages of the chaperonin cycle, including a sequential activation of its subunits in response to nucleotide binding. But we lack a thorough mechanistic understanding of the structure-based dynamics and communication properties that underlie the TRiC/CCT machinery. In this study, we present a computational methodology based on elastic network models adapted to cryo-EM density maps to gain a deeper understanding of the structure-encoded allosteric dynamics of this hexadecameric machine. We have analysed several structures of the chaperonin resolved in different states toward mapping its conformational landscape. Our study indicates that the overall architecture intrinsically favours cooperative movements that comply with the structural variabilities observed in experiments. Furthermore, the individual subunits CCT1-CCT8 exhibit state-dependent sequential events at different states of the allosteric cycle. For example, in the ATP-bound state, subunits CCT5 and CCT4 selectively initiate the lid closure motions favoured by the overall architecture; whereas in the apo form of the heteromer, the subunit CCT7 exhibits the highest predisposition to structural change. The changes then propagate through parallel fluxes of allosteric signals to neighbours on both rings. The predicted state-dependent mechanisms of sequential activation provide new insights into TRiC/CCT intra- and inter-ring signal transduction events.


Assuntos
Chaperonina com TCP-1/química , Microscopia Crioeletrônica/métodos , Células Eucarióticas/enzimologia , Regulação Alostérica , Células Eucarióticas/metabolismo , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade
11.
EMBO Mol Med ; 12(12): e12391, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33231937

RESUMO

KLF4 plays a critical role in determining cell fate responding to various stresses or oncogenic signaling. Here, we demonstrated that KLF4 is tightly regulated by poly(ADP-ribosyl)ation (PARylation). We revealed the subcellular compartmentation for KLF4 is orchestrated by PARP1-mediated PARylation. We identified that PARylation of KLF4 is critical to govern KLF4 transcriptional activity through recruiting KLF4 from soluble nucleus to the chromatin. We mapped molecular motifs on KLF4 and PARP1 that facilitate their interaction and unveiled the pivotal role of the PBZ domain YYR motif (Y430, Y451 and R452) on KLF4 in enabling PARP1-mediated PARylation of KLF4. Disruption of KLF4 PARylation results in failure in DNA damage response. Depletion of KLF4 by RNA interference or interference with PARP1 function by KLF4YYR/AAA (a PARylation-deficient mutant) significantly sensitizes breast cancer cells to PARP inhibitors. We further demonstrated the role of KLF4 in modulating homologous recombination through regulating BRCA1 transcription. Our work points to the synergism between KLF4 and PARP1 in tumorigenesis and cancer therapy, which provides a potential new therapeutic strategy for killing BRCA1-proficient triple-negative breast cancer cells.


Assuntos
Carcinogênese , Instabilidade Genômica , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Poli ADP Ribosilação , Animais , Cromatina , Feminino , Células HEK293 , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Neoplasias/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo
12.
Cancer Discov ; 10(12): 1872-1893, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32938586

RESUMO

Despite widespread utilization of immunotherapy, treating immune-cold tumors has proved to be a challenge. Here, we report that expression of the immune checkpoint molecule B7-H4 is prevalent among immune-cold triple-negative breast cancers (TNBC), where its expression inversely correlates with that of PD-L1. Glycosylation of B7-H4 interferes with its interaction/ubiquitination by AMFR, resulting in B7-H4 stabilization. B7-H4 expression inhibits doxorubicin-induced cell death through the suppression of eIF2α phosphorylation required for calreticulin exposure vis-à-vis the cancer cells. NGI-1, which inhibits B7-H4 glycosylation causing its ubiquitination and subsequent degradation, improves the immunogenic properties of cancer cells treated with doxorubicin, enhancing their phagocytosis by dendritic cells and their capacity to elicit CD8+ IFNγ-producing T-cell responses. In preclinical models of TNBC, a triple combination of NGI-1, camsirubicin (a noncardiotoxic doxorubicin analogue) and PD-L1 blockade was effective in reducing tumor growth. Collectively, our findings uncover a strategy for targeting the immunosuppressive molecule B7-H4. SIGNIFICANCE: This work unravels the regulation of B7-H4 stability by ubiquitination and glycosylation, which affects tumor immunogenicity, particularly regarding immune-cold breast cancers. The inhibition of B7-H4 glycosylation can be favorably combined with immunogenic chemotherapy and PD-L1 blockade to achieve superior immuno-infiltration of cold tumors, as well as improved tumor growth control.See related commentary by Pearce and Läubli, p. 1789.This article is highlighted in the In This Issue feature, p. 1775.


Assuntos
Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/antagonistas & inibidores , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Glicosilação , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sulfonamidas/farmacologia , Ubiquitinação , Inibidor 1 da Ativação de Células T com Domínio V-Set/imunologia
13.
Nat Chem Biol ; 16(10): 1096-1104, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32632293

RESUMO

Peptide ligands of class B G-protein-coupled receptors act via a two-step binding process, but the essential mechanisms that link their extracellular binding to intracellular receptor-arrestin interactions are not fully understood. Using NMR, crosslinking coupled to mass spectrometry, signaling experiments and computational approaches on the parathyroid hormone (PTH) type 1 receptor (PTHR), we show that initial binding of the PTH C-terminal part constrains the conformation of the flexible PTH N-terminal signaling epitope before a second binding event occurs. A 'hot-spot' PTH residue, His9, that inserts into the PTHR transmembrane domain at this second step allosterically engages receptor-arrestin coupling. A conformational change in PTHR intracellular loop 3 permits favorable interactions with ß-arrestin's finger loop. These results unveil structural determinants for PTHR-arrestin complex formation and reveal that the two-step binding mechanism proceeds via cooperative fluctuations between ligand and receptor, which extend to other class B G-protein-coupled receptors.


Assuntos
Arrestina/metabolismo , Hormônio Paratireóideo/metabolismo , Arrestina/química , Fosfatos de Cálcio , Microscopia Crioeletrônica , AMP Cíclico , Escherichia coli , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Hormônio Paratireóideo/química , Receptores Acoplados a Proteínas G
14.
Proc Natl Acad Sci U S A ; 117(25): 14376-14385, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513718

RESUMO

Temporally harmonized elimination of damaged or unnecessary organelles and cells is a prerequisite of health. Under Type 2 inflammatory conditions, human airway epithelial cells (HAECs) generate proferroptotic hydroperoxy-arachidonoyl-phosphatidylethanolamines (HpETE-PEs) as proximate death signals. Production of 15-HpETE-PE depends on activation of 15-lipoxygenase-1 (15LO1) in complex with PE-binding protein-1 (PEBP1). We hypothesized that cellular membrane damage induced by these proferroptotic phospholipids triggers compensatory prosurvival pathways, and in particular autophagic pathways, to prevent cell elimination through programmed death. We discovered that PEBP1 is pivotal to driving dynamic interactions with both proferroptotic 15LO1 and the autophagic protein microtubule-associated light chain-3 (LC3). Further, the 15LO1-PEBP1-generated ferroptotic phospholipid, 15-HpETE-PE, promoted LC3-I lipidation to stimulate autophagy. This concurrent activation of autophagy protects cells from ferroptotic death and release of mitochondrial DNA. Similar findings are observed in Type 2 Hi asthma, where high levels of both 15LO1-PEBP1 and LC3-II are seen in HAECs, in association with low bronchoalveolar lavage fluid mitochondrial DNA and more severe disease. The concomitant activation of ferroptosis and autophagy by 15LO1-PEBP1 complexes and their hydroperoxy-phospholipids reveals a pathobiologic pathway relevant to asthma and amenable to therapeutic targeting.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Asma/imunologia , Autofagia/imunologia , Células Epiteliais/patologia , Ferroptose/imunologia , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Adulto , Animais , Asma/diagnóstico , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Linhagem Celular , Sobrevivência Celular/imunologia , Células Epiteliais/imunologia , Feminino , Técnicas de Inativação de Genes , Humanos , Ácidos Hidroxieicosatetraenoicos/imunologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Interleucina-13/imunologia , Interleucina-13/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Proteína de Ligação a Fosfatidiletanolamina/genética , Fosfatidiletanolaminas/imunologia , Fosfatidiletanolaminas/metabolismo , Cultura Primária de Células , Ligação Proteica/imunologia , Índice de Gravidade de Doença
15.
Int J Mol Sci ; 21(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325894

RESUMO

Autophagy plays an essential role in cell survival/death and functioning. Modulation of autophagy has been recognized as a promising therapeutic strategy against diseases/disorders associated with uncontrolled growth or accumulation of biomolecular aggregates, organelles, or cells including those caused by cancer, aging, neurodegeneration, and liver diseases such as α1-antitrypsin deficiency. Numerous pharmacological agents that enhance or suppress autophagy have been discovered. However, their molecular mechanisms of action are far from clear. Here, we collected a set of 225 autophagy modulators and carried out a comprehensive quantitative systems pharmacology (QSP) analysis of their targets using both existing databases and predictions made by our machine learning algorithm. Autophagy modulators include several highly promiscuous drugs (e.g., artenimol and olanzapine acting as activators, fostamatinib as an inhibitor, or melatonin as a dual-modulator) as well as selected drugs that uniquely target specific proteins (~30% of modulators). They are mediated by three layers of regulation: (i) pathways involving core autophagy-related (ATG) proteins such as mTOR, AKT, and AMPK; (ii) upstream signaling events that regulate the activity of ATG pathways such as calcium-, cAMP-, and MAPK-signaling pathways; and (iii) transcription factors regulating the expression of ATG proteins such as TFEB, TFE3, HIF-1, FoxO, and NF-κB. Our results suggest that PKA serves as a linker, bridging various signal transduction events and autophagy. These new insights contribute to a better assessment of the mechanism of action of autophagy modulators as well as their side effects, development of novel polypharmacological strategies, and identification of drug repurposing opportunities.


Assuntos
Autofagia/efeitos dos fármacos , Descoberta de Drogas/métodos , Farmacologia/métodos , Autofagia/genética , Biomarcadores , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Biologia Computacional/métodos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
16.
Cancer Res ; 80(12): 2550-2563, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32269044

RESUMO

EIF3H is presumed to be a critical translational initiation factor. Here, our unbiased screening for tumor invasion factors has identified an unexpected role for EIF3H as a deubiquitylating enzyme that dictates breast tumor invasion and metastasis by modulating the Hippo-YAP pathway. EIF3H catalyzed YAP for deubiquitylation, resulting in its stabilization. Structure-based molecular modeling and simulations coupled with biochemical characterization unveiled a unique catalytic mechanism for EIF3H in dissociating polyubiquitin chains from YAP through a catalytic triad consisting of Asp90, Asp91, and Gln121. Trp119 and Tyr 140 on EIF3H directly interacted with the N-terminal region of YAP1, facilitating complex formation of EIF3H and YAP1 for YAP1 deubiquitylation. Stabilization of YAP via elevated EIF3H promoted tumor invasion and metastasis. Interference of EIF3H-mediated YAP deubiquitylation blocked YAP-induced tumor progression and metastasis in breast cancer models. These findings point to a critical role for YAP regulation by EIF3H in tumor invasion and metastasis. SIGNIFICANCE: This work demonstrates that EIF3H is a novel bona fide deubiquitinase that counteracts YAP ubiquitylation and proteolysis, and stabilization of YAP by EIF3H promotes tumor invasion and metastasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/patologia , Carcinogênese/patologia , Carcinoma Ductal de Mama/secundário , Enzimas Desubiquitinantes/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biocatálise , Mama/patologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/mortalidade , Carcinoma Ductal de Mama/cirurgia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Intervalo Livre de Doença , Feminino , Via de Sinalização Hippo , Humanos , Estimativa de Kaplan-Meier , Mastectomia , Camundongos , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Invasividade Neoplásica/patologia , Prognóstico , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transdução de Sinais , Ubiquitinação , Proteínas de Sinalização YAP , Adulto Jovem
17.
PLoS Comput Biol ; 16(4): e1007749, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251469

RESUMO

The renal outer medullary potassium (ROMK) channel is essential for potassium transport in the kidney, and its dysfunction is associated with a salt-wasting disorder known as Bartter syndrome. Despite its physiological significance, we lack a mechanistic understanding of the molecular defects in ROMK underlying most Bartter syndrome-associated mutations. To this end, we employed a ROMK-dependent yeast growth assay and tested single amino acid variants selected by a series of computational tools representative of different approaches to predict each variants' pathogenicity. In one approach, we used in silico saturation mutagenesis, i.e. the scanning of all possible single amino acid substitutions at all sequence positions to estimate their impact on function, and then employed a new machine learning classifier known as Rhapsody. We also used two additional tools, EVmutation and Polyphen-2, which permitted us to make consensus predictions on the pathogenicity of single amino acid variants in ROMK. Experimental tests performed for selected mutants in different classes validated the vast majority of our predictions and provided insights into variants implicated in ROMK dysfunction. On a broader scope, our analysis suggests that consolidation of data from complementary computational approaches provides an improved and facile method to predict the severity of an amino acid substitution and may help accelerate the identification of disease-causing mutations in any protein.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/genética , Substituição de Aminoácidos , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Biologia Computacional/métodos , Humanos , Rim/metabolismo , Rim/patologia , Mutação , Mutação de Sentido Incorreto/genética , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Saccharomyces cerevisiae/genética
18.
Radiat Res ; 193(5): 435-450, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134361

RESUMO

Mitigation of total-body irradiation (TBI) in C57BL/6 mice by two drugs, which target apoptosis and necroptosis respectively, increases survival compared to one drug alone. Here we investigated whether the biomarker (signature)directed addition of a third anti-ferroptosis drug further mitigated TBI effects. C57BL/6NTac female mice (30-33 g) received 9.25 Gy TBI, and 24 h or later received JP4-039 (20 mg/kg), necrostatin-1 (1.65 mg/kg) and/or lipoxygenase-15 inhibitor (baicalein) (50 mg/kg) in single-, dual- or three-drug regimens. Some animals were sacrificed at days 0, 1, 2, 3, 4 or 7 postirradiation, while the majority in each group were maintained beyond 30 days. For those mice sacrificed at the early time points, femur bone marrow, intestine (ileum), lung and blood plasma were collected and analyzed for radiation-induced and mitigator-modified levels of 33 pro-inflammatory and stress response proteins. Each single mitigator administered [JP4-039 (24 h), necrostatin-1 (48 h) or baicalein (24 h)] improved survival at day 30 after TBI to 25% (P = 0.0432, 0.2816 or 0.1120, respectively) compared to 5% survival of 9.25 Gy TBI controls. Mice were administered the drug individually based on weight (mg/kg). Drug vehicles comprised 30% cyclodextrin for JP4-039 and baicalein, and 10% Cremphor-EL/10% ethanol/80% water for necrostatin-1; thus, dual-vehicle controls were also tested. The dual-drug combinations further enhanced survival: necrostatin-1 (delayed to 72 h) with baicalein 40% (P = 0.0359); JP4-039 with necrostatin-1 50% (P = 0.0062); and JP4-039 with baicalein 60% (P = 0.0064). The three-drug regimen, timed to signature directed evidence of onset after TBI of each death pathway in marrow and intestine, further increased the 30-day survival to 75% (P = 0.0002), and there was optimal normalization to preirradiation levels of inflammatory cytokine and stress response protein levels in plasma, intestine and marrow. In contrast, lung protein levels were minimally altered by 9.25 Gy TBI or mitigators over 7 days. Significantly, elevated intestinal proteins at day 7 after TBI were reduced by necrostatin-1-containing regimens; however, normalization of plasma protein levels at day 7 required the addition of JP4-039 and baicalein. These findings indicate that mitigator targeting to three distinct cell death pathways increases survival after TBI.


Assuntos
Apoptose/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Necroptose/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Irradiação Corporal Total/efeitos adversos , Animais , Apoptose/efeitos da radiação , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/efeitos da radiação , Citocinas/metabolismo , Interações Medicamentosas , Feminino , Ferroptose/efeitos da radiação , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Necroptose/efeitos da radiação , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/prevenção & controle , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Tempo
19.
Bioinformatics ; 36(12): 3935-3937, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32221612

RESUMO

SUMMARY: QuartataWeb is a user-friendly server developed for polypharmacological and chemogenomics analyses. Users can easily obtain information on experimentally verified (known) and computationally predicted (new) interactions between 5494 drugs and 2807 human proteins in DrugBank, and between 315 514 chemicals and 9457 human proteins in the STITCH database. In addition, QuartataWeb links targets to KEGG pathways and GO annotations, completing the bridge from drugs/chemicals to function via protein targets and cellular pathways. It allows users to query a series of chemicals, drug combinations or multiple targets, to enable multi-drug, multi-target, multi-pathway analyses, toward facilitating the design of polypharmacological treatments for complex diseases. AVAILABILITY AND IMPLEMENTATION: QuartataWeb is freely accessible at http://quartata.csb.pitt.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Polifarmacologia , Software , Bases de Dados Factuais , Humanos , Internet , Proteínas/genética
20.
Nat Chem Biol ; 16(3): 278-290, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080625

RESUMO

Ferroptotic death is the penalty for losing control over three processes-iron metabolism, lipid peroxidation and thiol regulation-that are common in the pro-inflammatory environment where professional phagocytes fulfill their functions and yet survive. We hypothesized that redox reprogramming of 15-lipoxygenase (15-LOX) during the generation of pro-ferroptotic signal 15-hydroperoxy-eicosa-tetra-enoyl-phosphatidylethanolamine (15-HpETE-PE) modulates ferroptotic endurance. Here, we have discovered that inducible nitric oxide synthase (iNOS)/NO•-enrichment of activated M1 (but not alternatively activated M2) macrophages/microglia modulates susceptibility to ferroptosis. Genetic or pharmacologic depletion/inactivation of iNOS confers sensitivity on M1 cells, whereas NO• donors empower resistance of M2 cells to ferroptosis. In vivo, M1 phagocytes, in comparison to M2 phagocytes, exert higher resistance to pharmacologically induced ferroptosis. This resistance is diminished in iNOS-deficient cells in the pro-inflammatory conditions of brain trauma or the tumour microenvironment. The nitroxygenation of eicosatetraenoyl (ETE)-PE intermediates and oxidatively truncated species by NO• donors and/or suppression of NO• production by iNOS inhibitors represent a novel redox mechanism of regulation of ferroptosis in pro-inflammatory conditions.


Assuntos
Ferroptose/fisiologia , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/fisiologia , Morte Celular , Feminino , Ferro/metabolismo , Ferro/fisiologia , Leucotrienos/metabolismo , Peroxidação de Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Óxido Nítrico Sintase Tipo II/fisiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA