Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924030

RESUMO

AXL+ Siglec-6+ dendritic cells (ASDC) are novel myeloid DCs which can be subdivided into CD11c+ and CD123+ expressing subsets. We showed for the first time that these two ASDC subsets are present in inflamed human anogenital tissues where HIV transmission occurs. Their presence in inflamed tissues was supported by single cell RNA analysis of public databases of such tissues including psoriasis diseased skin and colorectal cancer. Almost all previous studies have examined ASDCs as a combined population. Our data revealed that the two ASDC subsets differ markedly in their functions when compared with each other and to pDCs. Relative to their cell functions, both subsets of blood ASDCs but not pDCs expressed co-stimulatory and maturation markers which were more prevalent on CD11c+ ASDCs, thus inducing more T cell proliferation and activation than their CD123+ counterparts. There was also a significant polarisation of naïve T cells by both ASDC subsets toward Th2, Th9, Th22, Th17 and Treg but less toward a Th1 phenotype. Furthermore, we investigated the expression of chemokine receptors that facilitate ASDCs and pDCs migration from blood to inflamed tissues, their HIV binding receptors, and their interactions with HIV and CD4 T cells. For HIV infection, within 2 hours of HIV exposure, CD11c+ ASDCs showed a trend in more viral transfer to T cells than CD123+ ASDCs and pDCs for first phase transfer. However, for second phase transfer, CD123+ ASDCs showed a trend in transferring more HIV than CD11c+ ASDCs and there was no viral transfer from pDCs. As anogenital inflammation is a prerequisite for HIV transmission, strategies to inhibit ASDC recruitment into inflamed tissues and their ability to transmit HIV to CD4 T cells should be considered.


Assuntos
Células Dendríticas , Infecções por HIV , Humanos , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptor Tirosina Quinase Axl , Masculino , HIV-1/imunologia , Feminino , Células Mieloides/metabolismo , Células Mieloides/imunologia , Pessoa de Meia-Idade , Adulto
2.
Methods Mol Biol ; 2779: 407-423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526797

RESUMO

The complexities and cellular heterogeneity associated with tissues necessitate the concurrent detection of markers beyond the limitations of conventional imaging approaches in order to spatially resolve the relationships between immune cell populations and their environments. This is a necessary complement to single-cell suspension-based methods to inform a better understanding of the events that may underlie pathological conditions. Imaging mass cytometry is a high-dimensional imaging modality that allows for the concurrent detection of up to 40 protein markers of interest across tissues at subcellular resolution. Here, we present an optimized staining protocol for imaging mass cytometry with modifications that integrate RNAscope. This unique addition enables combined protein and single-molecule RNA detection, thereby expanding the utility of imaging mass cytometry to researchers investigating low abundance or noncoding targets. In general, the procedure described is broadly applicable for comprehensive immune profiling of host-pathogen interactions, tumor microenvironments and inflammatory conditions, all within the tissue contexture.


Assuntos
Proteínas , RNA , Coloração e Rotulagem , Citometria por Imagem/métodos , Citometria de Fluxo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA