Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132361, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750857

RESUMO

Critical-sized bone defects are a major challenge in reconstructive bone surgery and usually fail to be treated due to limited remaining bone quality and extensive healing time. The combination of 3D-printed scaffolds and bioactive materials is a promising approach for bone tissue regeneration. In this study, 3D-printed alkaline-treated polycaprolactone scaffolds (M-PCL) were fabricated and integrated with tragacanth gum- 45S5 bioactive glass (TG-BG) to treat critical-sized calvarial bone defects in female adult Wistar rats. After a healing period of four and eight weeks, the new bone of blank, M-PCL, and M-PCL/TG-BG groups were harvested and assessed. Micro-computed tomography, histological, biochemical, and biomechanical analyses, gene expression, and bone matrix formation were used to assess bone regeneration. The micro-computed tomography results showed that the M-PCL/TG-BG scaffolds not only induced bone tissue formation within the bone defect but also increased BMD and BV/TV compared to blank and M-PCL groups. According to the histological analysis, there was no evidence of bony union in the calvarial defect regions of blank groups, while in M-PCL/TG-BG groups bony integration and repair were observed. The M-PCL/TG-BG scaffolds promoted the Runx2 and collagen type I expression as compared with blank and M-PCL groups. Besides, the bone regeneration in M-PCL/TG-BG groups correlated with TG-BG incorporation. Moreover, the use of M-PCL/TG-BG scaffolds promoted the biomechanical properties in the bone remodeling process. These data demonstrated that the M-PCL/TG-BG scaffolds serve as a highly promising platform for the development of bone grafts, supporting bone regeneration with bone matrix formation, and osteogenic features. Our results exhibited that the 3D-printed M-PCL/TG-BG scaffolds are a promising strategy for successful bone regeneration.


Assuntos
Regeneração Óssea , Vidro , Osteogênese , Poliésteres , Impressão Tridimensional , Ratos Wistar , Crânio , Alicerces Teciduais , Animais , Poliésteres/química , Alicerces Teciduais/química , Ratos , Regeneração Óssea/efeitos dos fármacos , Crânio/efeitos dos fármacos , Crânio/patologia , Crânio/lesões , Crânio/diagnóstico por imagem , Osteogênese/efeitos dos fármacos , Feminino , Vidro/química , Tragacanto/química , Microtomografia por Raio-X , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
2.
J Cancer Res Ther ; 19(5): 1311-1315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37787300

RESUMO

Purpose: The present study aimed to assess the effects of extremely low-frequency electromagnetic fields (ELF-MF) on structural changes of human osteosarcoma cells by analyzing the stained cytoskeleton for assessing the relationship between the fractal dimension parameter and proliferation rate of radiation-induced cells. Materials and Methods: In this study, 2-mT magnetic fields with various waveforms, including sinusoidal, triangular, and pulsed shapes, were employed to determine the biological effects of ELF-EMF on the human osteosarcoma MG-63 cell line. All experiments were performed in two modes: continuous exposure at 3 h and fractionated irradiations at 3 consecutive days. Afterward, the proliferation assay was implemented for assessing the cell proliferation in each group. Moreover, immunofluorescence staining and confocal imaging were performed to determine the cell shape index. Furthermore, fractal dimension analysis was carried out by processing morphological images. Results: The proliferation and shape index parameters of radiation-induced osteosarcomas significantly decreased compared with non-irradiated cells. In addition, fractal dimensions significantly increased following fractionated exposure at 3 consecutive days. Conclusions: Assessing the fractal dimensions can be considered as a new morphological index for the prognosis of the structural remodeling of human osteosarcoma cells in response to fractionated irradiation of ELF-MF. In addition, various waveforms induce a similar effect on morphological remodeling and cell proliferation.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Campos Eletromagnéticos , Campos Magnéticos , Proliferação de Células
3.
J Orthop Surg Res ; 17(1): 320, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725606

RESUMO

In this paper, the in-vivo healing of critical-sized bony defects by cell-free and stem cell-seeded 3D-printed PLA scaffolds was studied in rat calvaria bone. The scaffolds were implanted in the provided defect sites and histological analysis was conducted after 8 and 12 weeks. The results showed that both cell-free and stem cell-seeded scaffolds exhibited superb healing compared with the empty defect controls, and new bone and connective tissues were formed in the healing site after 8 and 12 weeks, postoperatively. The higher filled area, bone formation and bone maturation were observed after 12 weeks, particularly for PLA + Cell scaffolds.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Animais , Osteogênese , Poliésteres , Impressão Tridimensional , Ratos , Crânio/diagnóstico por imagem , Crânio/cirurgia , Células-Tronco , Engenharia Tecidual/métodos
4.
Lasers Med Sci ; 37(7): 2855-2863, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35394552

RESUMO

Photobiomodulation (PBM) therapy utilizes low-power lasers to modulate the viability of living human cells and leads to changes in proliferation, differentiation, adhesion and gene expression, even though the rearrangement of cytoskeleton was not previously studied. The present study aims to evaluate the photobiological effects on the elastic behavior of human osteosarcoma cells (MG-63) and their morphological changes. Fluorescence staining, confocal imaging and atomic force microscopy (AFM) topography were performed to study the effects of PBM therapy with the exposure of 532 nm-25mW, 650 nm-3mW, 650 nm-150mW and 780 nm-70mW beams following the 5-min continuous irradiation. The area of each beam was 3.14cm2 with a source-surface distance of 20 cm. Besides the cell proliferation assessment, the migratory potential of MG-63 was determined with the wound healing technique. The results indicated an increase in stiffness and shape index of radiation-induced cells 24 h after exposure along with the obvious F-actins changes. But, cell stiffening was not observed 72 h after 532 nm laser irradiation. Also, a decrease in the migration rate was seen in all of the groups after 72 h of irradiation except cells treated with 532 nm wavelength. However, 532 nm laser beams increase the migratory potential 24 h after exposure. Within 72 h after irradiation, the cell proliferation was only affected by applying 532 nm and 650 nm-150mW laser beams. It was concluded that applying photobiomodulation with wavelengths of 650 nm (at both utilized powers) and 780 nm alters the migration capability and provides a quantitative description of cytoskeletal changes. Moreover, membrane stiffening can be considered as the biological marker of PBM treatments.


Assuntos
Terapia com Luz de Baixa Intensidade , Osteossarcoma , Proliferação de Células/efeitos da radiação , Citoesqueleto , Módulo de Elasticidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Osteossarcoma/radioterapia
5.
Phytother Res ; 35(11): 6452-6461, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34606108

RESUMO

Recent studies suggest that Spirulina may have great therapeutic benefits due to its antioxidant and anti-inflammatory properties. The primary objective of this study was to evaluate the chemopreventive properties of the Spirulina microalgae (Spi) on the regression and survival of tumor, histopathological features of glioblastoma, and detection of the molecular mechanism of Spi. Tumor viability versus Spi was determined using the MTT assay. In vivo antitumor activity of Spi was studied using the glioblastoma model. After tumor induction, the animals were euthanized, and their brains were removed. Histological evaluation was performed for tumor size and manifestation. The mechanisms of the anticancer effects of Spi were investigated by evaluating the microRNAs and their targets. The results demonstrated that Spi inhibited C6 and U87 cell proliferation and induced cell death. Histopathologic results showed that the administration of Spi could delay the development of tumors and prolonged the survival of tumor-bearing animals. Furthermore, Spi significantly upregulated miR-34a and miR-125b that have a key role in the progression of PI3K/AKT/mTOR pathway. This is the first in vivo report on the chemo-preventive effect of Spi against glioblastoma, suggesting its potential use in the chemoprevention of this cancer and the antiglioma molecular mechanism of Spi.


Assuntos
Glioblastoma , MicroRNAs , Microalgas , Spirulina , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Regulação para Baixo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
6.
Dent Res J (Isfahan) ; 18: 58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497693

RESUMO

BACKGROUND: The margin of crown is a significant area for plaque accumulations. Therefore, the ability of the cement to seal the margin is very important. The aim of the present study was to evaluate the bond (retentive) strength, microleakage, and failure mode of four different types of cements in stainless steel crown (SSC) of primary molar teeth. MATERIALS AND METHODS: In this experimental study, eighty extracted primary molar teeth were divided into two groups of forty teeth to test the microleakage and bond strength. The crowns were cemented according to the manufacturer guidelines with four cement types including self-cure glass ionomer, resin-modified glass ionomer, polycarboxylate, and resin cements. Stereomicroscope and universal testing machine were used to measure the microleakage and bond strength, respectively. For calculating the surface area of crowns, three-dimensional scanning was used. Furthermore, the failure mode was examined after the bond strength test. The cements surfaces and the tooth-cement interfaces were evaluated using scanning electron microscopy (SEM). The obtained values were analyzed using SPSS-23 software through Shapiro-Wilk and one-way analysis of variance tests. Means, standard deviations, medians, and interquartile ranges were calculated. P < 0.05 was considered as statistically significant in all analyses. RESULTS: Significant differences between microleakage (P = 0.001) and failure mode (P = 0.041) of the four types of cements were obtained. However, the mean bond strengths of the four groups did not differ significantly (P = 0.124). The obtained SEM images confirmed the results of bond strength and microleakage. CONCLUSION: Resin cement and resin-modified glass ionomer, respectively, showed superior properties and are recommended for use in SSCs of primary molar teeth.

7.
J Orthop Surg Res ; 16(1): 79, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482866

RESUMO

BACKGROUND: Alumina-titanium (Al2O3-Ti) biocomposites have been recently developed with improved mechanical properties for use in heavily loaded orthopedic sites. Their biological performance, however, has not been investigated yet. METHODS: The aim of the present study was to evaluate the in vivo biological interaction of Al2O3-Ti. Spark plasma sintering (SPS) was used to fabricate Al2O3-Ti composites with 25 vol.%, 50 vol.%, and 75 vol.% Ti content. Pure alumina and titanium were also fabricated by the same procedure for comparison. The fabricated composite disks were cut into small bars and implanted into medullary canals of rat femurs. The histological analysis and scanning electron microscopy (SEM) observation were carried out to determine the bone formation ability of these materials and to evaluate the bone-implant interfaces. RESULTS: The histological observation showed the formation of osteoblast, osteocytes with lacuna, bone with lamellar structures, and blood vessels indicating that the healing and remodeling of the bone, and vasculature reconstruction occurred after 4 and 8 weeks of implantation. However, superior bone formation and maturation were obtained after 8 weeks. SEM images also showed stronger interfaces at week 8. There were differences between the composites in percentages of bone area (TB%) and the number of osteocytes. The 50Ti composite showed higher TB% at week 4, while 25Ti and 75Ti represented higher TB% at week 8. All the composites showed a higher number of osteocytes compared to 100Ti, particularly 75Ti. CONCLUSIONS: The fabricated composites have the potential to be used in load-bearing orthopedic applications.


Assuntos
Óxido de Alumínio , Materiais Biocompatíveis , Interface Osso-Implante/fisiologia , Fêmur/cirurgia , Osteogênese , Desenho de Prótese , Implantação de Prótese/métodos , Titânio , Animais , Remodelação Óssea , Fêmur/fisiopatologia , Osteoblastos/fisiologia , Osteócitos/fisiologia , Ratos , Fatores de Tempo
8.
J Mech Behav Biomed Mater ; 72: 82-89, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28463814

RESUMO

Orthopaedic prostheses still suffer from limited lifetime which imposes revision surgery with the associated risks involved. This, to some extent, is related to the vulnerability of the biomaterials used for their fabrication that are commonly single-constituent and uniform. Therefore, hybrid biomaterials such as composites and functionally graded materials (FGMs) are being developed to overcome the shortcomings of available biomaterials. The present paper focuses on the study of the structural, physical and mechanical properties of a FGM made of alumina-titanium fabricated by spark plasma sintering (SPS). The corresponding composites of the individual FGM layer were also fabricated. After sintering, the structural, mechanical and physical tests were carried out. The microstructural analysis using X-ray diffraction revealed the presence of Ti3Al and TiAl in the composites, particularly with the increase of titanium content. Scanning electron micrographs revealed good adhesion and bonding between the two phases and between the FGM layers. The hardness and bending strength of the composites and FGM samples were tested and it was found that the increase in amount of Ti volume fraction decreases these properties monotonically. Furthermore, the sintering behaviour and fracture mechanisms of the FGM sample were studied and discussed.


Assuntos
Óxido de Alumínio/análise , Materiais Biocompatíveis/análise , Ortopedia , Titânio/análise , Teste de Materiais , Desenho de Prótese , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA