Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
4.
Adv Mater ; 36(23): e2310875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450765

RESUMO

Photodynamic therapy (PDT) has been approved for clinic. However, powerless efficiency for deep hypoxic tumor therapy remains an enormous challenge for PDT. Herein, a hypoxia-sensitive nanotherapeutic system (FTCD-SRGD) based on fullerene (C70) and anoxic activating chemical prodrug tirapazamine (TPZ) is rationally designed for multimodal therapy of deep hypoxic tumors. To enhance the accumulation and achieve specific drug release in tumor, the FTCD-SRGD is modified with cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGDfK) peptide and disulfide bonds. With the exacerbated hypoxic microenvironment created by C70 consuming O2 for generating reactive oxygen species (ROS), TPZ is activated to produce toxic radical species to ablate deep tumors, which achieves a synergistic treatment of C70-mediated PDT and hypoxia-enhanced chemotherapy. Additionally, given this hypoxia-sensitive system-induced immunogenic cell death (ICD) activating anticancer cytotoxic T lymphocyte to result in more susceptible tumor to immunotherapy, FTCD-SRGD plus immune checkpoint inhibitor (anti-PD-L1) fully inhibit deep hypoxic tumors by promoting infiltration of effector T cells in tumors. Collectively, it is the first time to develop a multimodal therapy system with fullerene-based hypoxia-sensitive PS for deep tumors. The powerful multimodal nanotherapeutic system for combining hypoxia-enhanced PDT and immunotherapy to massacre deep hypoxic tumors can provide a paradigm to combat the present bottleneck of tumor therapy.


Assuntos
Fulerenos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Tirapazamina , Fulerenos/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Fotoquimioterapia/métodos , Camundongos , Linhagem Celular Tumoral , Tirapazamina/química , Tirapazamina/farmacologia , Humanos , Terapia Combinada , Microambiente Tumoral/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Hipóxia Tumoral/efeitos dos fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
5.
Adv Mater ; 36(21): e2312440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332741

RESUMO

Delayed re-epithelization and weakened skin contractions are the two primary factors that hinder wound closure in large-scale acute or chronic wounds. However, effective strategies for targeting these two aspects concurrently are still lacking. Herein, an antioxidative active-shrinkage hydrogel (AHF@AS Gel) is constructed that can integratedly promote re-epithelization and skin constriction to accelerate large-scale acute and diabetic chronic wound closure. The AHF@AS Gel is encapsulated by antioxidative amino- and hydroxyl-modified C70 fullerene (AHF) and a thermosensitive active shrinkage hydrogel (AS Gel). Specifically, AHF relieves overactivated inflammation, prevents cellular apoptosis, and promotes fibroblast migration in vitro by reducing excessive reactive oxygen species (ROS). Notably, the AHF@AS Gel achieved ≈2.7-fold and ≈1.7-fold better re-epithelization in acute wounds and chronic diabetic wounds, respectively, significantly contributing to the promotion of wound closure. Using proteomic profiling and mechanistic studies, it is identified that the AHF@AS Gel efficiently promoted the transition of the inflammatory and proliferative phases to the remodeling phase. Notably, it is demonstrated that AS Gel alone activates the mechanosensitive epidermal growth factor receptor/Akt (EGFR/Akt) pathway and promotes cell proliferation. The antioxidative active shrinkage hydrogel offers a comprehensive strategy for acute wound and diabetic chronic wound closure via biochemistry regulation integrating with mechanical forces stimulation.


Assuntos
Antioxidantes , Hidrogéis , Pele , Cicatrização , Hidrogéis/química , Antioxidantes/química , Antioxidantes/farmacologia , Animais , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Camundongos , Cicatrização/efeitos dos fármacos , Fulerenos/química , Fulerenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores ErbB/metabolismo , Reepitelização/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Movimento Celular/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose/efeitos dos fármacos
7.
Natl Sci Rev ; 10(1): nwac167, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684514

RESUMO

Ferroptosis, an iron-dependent regulated cell death process driven by excessive lipid peroxides, can enhance cancer vulnerability to chemotherapy, targeted therapy and immunotherapy. As an essential upstream process for ferroptosis activation, lipid peroxidation of biological membranes is expected to be primarily induced by intrabilayer reactive oxygen species (ROS), indicating a promising strategy to initiate peroxidation by improving the local content of diffusion-limited ROS in the lipid bilayer. Herein, liposomes embedded with PEG-coated 3 nm γ-Fe2O3 nanoparticles in the bilayer (abbreviated as Lp-IO) were constructed to promote the intrabilayer generation of hydroxyl radicals (•OH) from hydrogen peroxide (H2O2), and the integration of amphiphilic PEG moieties with liposomal bilayer improved lipid membrane permeability to H2O2 and •OH, resulting in efficient initiation of lipid peroxidation and thus ferroptosis in cancer cells. Additionally, Lp-IO enabled traceable magnetic resonance imaging and pH/ROS dual-responsive drug delivery. Synergistic antineoplastic effects of chemotherapy and ferroptosis, and alleviated chemotherapeutic toxicity, were achieved by delivering doxorubicin (capable of xCT and glutathione peroxidase inhibition) with Lp-IO. This work provides an efficient alternative for triggering therapeutic lipid peroxidation and a ferroptosis-activating drug delivery vehicle for combination cancer therapies.

8.
Adv Sci (Weinh) ; 9(29): e2201541, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36031401

RESUMO

Malignant proliferation and metastasis are the hallmarks of cancer cells. Aminated [70]fullerene exhibits notable antineoplastic effects, promoting it a candidate for multi-targeted cancer drugs. It is an urgent need to reveal the structure-activity relationship for antineoplastic aminated fullerenes. Herein, three amphiphilic derivatives of [60]fullerene with clarified molecular structures are synthesized: TAPC-4, TAPC-3, and TCPC-4. TAPC-4 inhibits the proliferation of diverse tumor cells via G0/G1 cell cycle arrest, reverses the epithelial-mesenchymal transition, and abrogates the high mobility of tumor cells. TAPC-4 can be excreted from the organism and achieves an in vivo inhibition index of 75.5% in tumor proliferation and 87.5% in metastatic melanoma with a wide safety margin. Molecular dynamics simulations reveal that the amphiphilic molecular structure and the ending amino groups promote the targeting of TAPC-4 to heat shock protein Hsp90-beta, vimentin, and myosin heavy chain 9 (MYH9), probably resulting in the alteration of cyclin D1 translation, vimentin expression, and MYH9 location, respectively. This work initially emphasizes the dominant role of the amphiphilic structure and the terminal amino moieties in the antineoplastic effects of aminated fullerenes, providing fundamental support for their anti-tumor drug development.


Assuntos
Antineoplásicos , Fulerenos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ciclina D1 , Fulerenos/química , Fulerenos/farmacologia , Fulerenos/uso terapêutico , Proteínas de Choque Térmico , Cadeias Pesadas de Miosina , Vimentina
9.
Sci China Life Sci ; 65(6): 1146-1156, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34735681

RESUMO

Ulcerative colitis (UC) is a long-term, recurrent inflammatory bowel disease for which no effective cure is yet available in the clinical setting. Repairing the barrier dysfunction of the colon and reducing intestinal inflammation are considered key objectives to cure UC. Here we demonstrate a novel therapeutic strategy based on a C60 fullerene suspension (C60FS) to treat dinitrobenzene sulfonic acid-induced UC in an animal model. C60FS can repair the barrier dysfunction of UC and effectively promote the healing of ulcers; it also manifests better treatment effects compared with mesalazine enema. C60FS can reduce the numbers of basophils in the blood of UC rats and mast cells in the colorectal tissue, thereby effectively alleviating inflammation. The expression of H1R, H4R, and VEGFR2 receptors in colorectal tissues is inhibited by C60FS, and the levels of histamine and prostaglandin in the rat blood are reduced. This work presents a reliable strategy based on fullerene to cure UC and provides a novel guide for UC treatment.


Assuntos
Colite Ulcerativa , Neoplasias Colorretais , Fulerenos , Nanopartículas , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Fulerenos/metabolismo , Fulerenos/uso terapêutico , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Ratos
10.
Theranostics ; 10(15): 6886-6897, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550910

RESUMO

Aplastic anemia (AA) is characterized as hypoplasia of bone marrow hematopoietic cells and hematopenia of peripheral blood cells. Though the supplement of exogenous erythropoietin (EPO) has been clinically approved for AA treatment, the side-effects hinder its further application. Here a robust treatment for AA induced by chemotherapy drugs is explored using gadofullerene nanoparticles (GFNPs). Methods: The gadofullerene were modified with hydrogen peroxide under alkaline conditions to become the water-soluble nanoparticles (GFNPs). The physicochemical properties, in vitro chemical construction, stability, hydroxyl radical scavenging ability, in vitro cytotoxicity, antioxidant activity, in vivo treatment efficacy, therapeutic mechanism and biological distribution, metabolism, toxicity of GFNPs were examined. Results: GFNPs with great stability and high-efficiency antioxidant activity could observably increase the number of red blood cells (RBC) in the peripheral blood of AA mice and relieve the abnormal pathological state of bone marrow. The erythropoiesis mainly includes hemopoietic stem cells (HSCs) differentiation, erythrocyte development in bone marrow and erythrocyte maturation in peripheral blood. The positive control-EPO promotes erythropoiesis by regulating HSCs differentiation and erythrocyte development in bone marrow. Different from the anti-AA mechanism of EPO, GFNPs have little impact on both the differentiation of HSCs and the myeloid erythrocyte development, but notably improve the erythrocyte maturation. Besides, GFNPs can notably decrease the excessive reactive oxygen species (ROS) and inhibit apoptosis of hemocytes in blood. In addition, GFNPs are mostly excreted from the living body and cause no serious toxicity. Conclusion: Our work provides an insight into the advanced nanoparticles to powerfully treat AA through ameliorating the erythrocyte maturation during erythropoiesis.


Assuntos
Anemia Aplástica/tratamento farmacológico , Células da Medula Óssea/efeitos dos fármacos , Ciclofosfamida/toxicidade , Eritropoetina/farmacologia , Fulerenos/química , Células-Tronco Hematopoéticas/efeitos dos fármacos , Nanopartículas/administração & dosagem , Anemia Aplástica/induzido quimicamente , Anemia Aplástica/patologia , Animais , Antineoplásicos Alquilantes/toxicidade , Células da Medula Óssea/metabolismo , Bussulfano/toxicidade , Diferenciação Celular , Modelos Animais de Doenças , Eritropoese/efeitos dos fármacos , Feminino , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/química
11.
Nano Lett ; 20(6): 4487-4496, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32407113

RESUMO

Cancer immunotherapy as a novel cancer therapeutic strategy has shown enormous promise. However, the immunosuppressive tumor microenvironment (ITM) is a primary obstacle. Tumor-associated macrophages (TAMs) as a major component of immune cells in a tumor microenvironment are generally polarized to the M2 phenotype that not only accelerates tumor growth but also influences the infiltration of lymphocytes and leads to immunosuppression. Thus, rebuilding ITM by re-educating TAMs and increasing infiltration of lymphocytes is a promising strategy. Herein, gadofullerene (GF-Ala) nanoparticles are demonstrated to reprogram TAMs to M1-like and increase the infiltration of cytotoxic T lymphocytes (CTLs), achieving effective inhibition of tumor growth. Notably, the modulation of ITM by GF-Ala promotes the anticancer efficacy of anti-PD-L1 immune checkpoint inhibitor, achieving superior synergistic treatment. Additionally, GF-Ala nanoparticles can be mostly excreted from the body and cause no obvious toxicity. Together, this study provides an effective immunomodulation strategy using gadofullerene nanoparticles by rebuilding ITM and synergizing immune checkpoint blockade therapy.


Assuntos
Fulerenos , Nanopartículas , Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico
12.
J Nanosci Nanotechnol ; 4(6): 611-5, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15518395

RESUMO

We have studied the effect of metal ions on the specific interaction between a protein, immunoglobulin E (IgE), and its 37-nt DNA aptamer with atomic force microscopy (AFM). Protein aptamers are a new class of synthetic single-stranded DNA/RNA oligonucleotide generated from in vitro selection to selectively bind with target proteins. The IgE aptamers have been developed and are expected to be promising reagents in IgE detection and new anti-allergic drug development. It is known that the presence of metal ions in the buffer usually has a strong effect on the affinity of single-stranded DNA for protein. In this work, the effect of two representative monovalent ion and divalent ion on the binding of IgE and the aptamer has been studied at the single-molecule level. The results from the AFM force measurements show that the metal ions not only reduce the single-molecular rupture force but also reduce the number of bonds formed between IgE and the aptamer.


Assuntos
Polarização de Fluorescência/métodos , Íons , Microscopia de Força Atômica/métodos , Nanotecnologia/métodos , Peptídeos/química , Proteínas/química , DNA/química , Relação Dose-Resposta a Droga , Imunoglobulina E/química , Magnésio/química , Metais/química , Ligação Proteica , Sódio/química
13.
Anal Chem ; 76(17): 5230-5, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15373466

RESUMO

A novel method of signaling aptamer/protein binding for aptamer-based protein detection has been developed using a molecular light switch complex, [Ru(phen)2(dppz)]2+. The method takes advantage of the sensitive luminescence signal change of [Ru(phen)2(dppz)]2+ intercalating to the aptamer upon protein/aptamer binding. A 37-nt DNA aptamer against immunoglobulin E (IgE) was first tested as a model system. The luminescence of the [Ru(phen)2(dppz)]2+/IgE aptamer decreased with the increase of IgE. By monitoring the luminescence change, we were able to detect the binding events between the aptamer and IgE for IgE quantitation in homogeneous solutions as well as in serum. The assay was highly selective and sensitive with a detection limit of 100 pM for IgE. This new method is very simple and without the need for the covalent coupling of fluorophores to aptamers. The generalizability of the method was demonstrated by the direct detection of two other proteins, oncoprotein platelet derived growth factor-BB (PDGF-BB) using its DNA aptamer and alpha-thrombin using its RNA aptamer. This new approach is expected to promote the exploitation of aptamer-based biosensors for protein assays in biochemical and biomedical studies.


Assuntos
Aptâmeros de Nucleotídeos/análise , Medições Luminescentes/métodos , Compostos Organometálicos/química , Proteínas/análise , Aptâmeros de Nucleotídeos/química , Becaplermina , Soluções Tampão , DNA/análise , DNA/química , Humanos , Imunoglobulina E/análise , Imunoglobulina E/química , Luz , Concentração Osmolar , Fator de Crescimento Derivado de Plaquetas/análise , Fator de Crescimento Derivado de Plaquetas/química , Ligação Proteica , Proteínas/química , Proteínas Proto-Oncogênicas c-sis , Prótons , RNA/análise , RNA/química , Sensibilidade e Especificidade , Trombina/análise , Trombina/química
14.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA