Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6282, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805600

RESUMO

Proteomic methods for RNA interactome capture (RIC) rely principally on crosslinking native or labeled cellular RNA to enrich and investigate RNA-binding protein (RBP) composition and function in cells. The ability to measure RBP activity at individual binding sites by RIC, however, has been more challenging due to the heterogenous nature of peptide adducts derived from the RNA-protein crosslinked site. Here, we present an orthogonal strategy that utilizes clickable electrophilic purines to directly quantify protein-RNA interactions on proteins through photoaffinity competition with 4-thiouridine (4SU)-labeled RNA in cells. Our photo-activatable-competition and chemoproteomic enrichment (PACCE) method facilitated detection of >5500 cysteine sites across ~3000 proteins displaying RNA-sensitive alterations in probe binding. Importantly, PACCE enabled functional profiling of canonical RNA-binding domains as well as discovery of moonlighting RNA binding activity in the human proteome. Collectively, we present a chemoproteomic platform for global quantification of protein-RNA binding activity in living cells.


Assuntos
Proteômica , RNA , Humanos , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Peptídeos/metabolismo
2.
J Am Chem Soc ; 145(20): 11056-11066, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37159397

RESUMO

Stress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells. Liganded sites were enriched for RNA-binding and protein-protein interaction (PPI) domains, including several sites found in RNP granule-forming proteins. Among these, we functionally validate G3BP1 Y40, located in the NTF2 dimerization domain, as a ligandable site that can disrupt arsenite-induced SG formation in cells. In summary, we present a chemical strategy for the systematic discovery of condensate-modulating covalent small molecules.


Assuntos
Grânulos Citoplasmáticos , DNA Helicases , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteômica , RNA Helicases/química
3.
Front Immunol ; 12: 723566, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504498

RESUMO

There is a pressing need for novel immunotherapeutic targets in colorectal cancer (CRC). Cytotoxic T cell infiltration is well established as a key prognostic indicator in CRC, and it is known that these tumor infiltrating lymphocytes (TILs) target and kill tumor cells. However, the specific antigens that drive these CD8+ T cell responses have not been well characterized. Recently, phosphopeptides have emerged as strong candidates for tumor-specific antigens, as dysregulated signaling in cancer leads to increased and aberrant protein phosphorylation. Here, we identify 120 HLA-I phosphopeptides from primary CRC tumors, CRC liver metastases and CRC cell lines using mass spectrometry and assess the tumor-resident immunity against these posttranslationally modified tumor antigens. Several CRC tumor-specific phosphopeptides were presented by multiple patients' tumors in our cohort (21% to 40%), and many have previously been identified on other malignancies (58% of HLA-A*02 CRC phosphopeptides). These shared antigens derived from mitogenic signaling pathways, including p53, Wnt and MAPK, and are therefore markers of malignancy. The identification of public tumor antigens will allow for the development of broadly applicable targeted therapeutics. Through analysis of TIL cytokine responses to these phosphopeptides, we have established that they are already playing a key role in tumor-resident immunity. Multifunctional CD8+ TILs from primary and metastatic tumors recognized the HLA-I phosphopeptides presented by their originating tumor. Furthermore, TILs taken from other CRC patients' tumors targeted two of these phosphopeptides. In another cohort of CRC patients, the same HLA-I phosphopeptides induced higher peripheral T cell responses than they did in healthy donors, suggesting that these immune responses are specifically activated in CRC patients. Collectively, these results establish HLA-I phosphopeptides as targets of the tumor-resident immunity in CRC, and highlight their potential as candidates for future immunotherapeutic strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Fosfopeptídeos/imunologia , Linhagem Celular Tumoral , Humanos , Linfócitos T Citotóxicos/imunologia
4.
Cancer Immunol Res ; 5(5): 376-384, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28314751

RESUMO

Leukemias are highly immunogenic, but they have a low mutational load, providing few mutated peptide targets. Thus, the identification of alternative neoantigens is a pressing need. Here, we identify 36 MHC class I-associated peptide antigens with O-linked ß-N-acetylglucosamine (O-GlcNAc) modifications as candidate neoantigens, using three experimental approaches. Thirteen of these peptides were also detected with disaccharide units on the same residues and two contain either mono- and/or di-methylated arginine residues. A subset were linked with key cancer pathways, and these peptides were shared across all of the leukemia patient samples tested (5/5). Seven of the O-GlcNAc peptides were synthesized and five (71%) were shown to be associated with multifunctional memory T-cell responses in healthy donors. An O-GlcNAc-specific T-cell line specifically killed autologous cells pulsed with the modified peptide, but not the equivalent unmodified peptide. Therefore, these posttranslationally modified neoantigens provide logical targets for cancer immunotherapy. Cancer Immunol Res; 5(5); 376-84. ©2017 AACR.


Assuntos
Antígenos de Neoplasias/imunologia , Glicopeptídeos/imunologia , Antígeno HLA-B7/imunologia , Leucemia/imunologia , Antígenos de Neoplasias/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Glicopeptídeos/metabolismo , Glicosilação , Antígeno HLA-B7/metabolismo , Humanos , Metilação , Processamento de Proteína Pós-Traducional , Linfócitos T/imunologia
5.
J Proteome Res ; 16(1): 228-237, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27550523

RESUMO

The MHC class II (MHCII) processing pathway presents peptides derived from exogenous or membrane-bound proteins to CD4+ T cells. Several studies have shown that glycopeptides are necessary to modulate CD4+ T cell recognition, though glycopeptide structures in these cases are generally unknown. Here, we present a total of 93 glycopeptides from three melanoma cell lines and one matched EBV-transformed line with most found only in the melanoma cell lines. The glycosylation we detected was diverse and comprised 17 different glycoforms. We then used molecular modeling to demonstrate that complex glycopeptides are capable of binding the MHC and may interact with complementarity determining regions. Finally, we present the first evidence of disulfide-bonded peptides presented by MHCII. This is the first large scale study to sequence glyco- and disulfide bonded MHCII peptides from the surface of cancer cells and could represent a novel avenue of tumor activation and/or immunoevasion.


Assuntos
Regiões Determinantes de Complementaridade/química , Glicopeptídeos/química , Antígenos HLA-DR/química , Melanócitos/imunologia , Sequência de Aminoácidos , Sítios de Ligação , Sequência de Carboidratos , Linhagem Celular Tumoral , Regiões Determinantes de Complementaridade/imunologia , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/imunologia , Glicopeptídeos/genética , Glicopeptídeos/imunologia , Glicosilação , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Humanos , Melanócitos/patologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Termodinâmica
6.
Nat Protoc ; 10(9): 1308-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26247297

RESUMO

Phosphorylation events within cancer cells often become dysregulated, leading to oncogenic signaling and abnormal cell growth. Phosphopeptides derived from aberrantly phosphorylated proteins that are presented on tumors and not on normal tissues by human leukocyte antigen (HLA) class I molecules are promising candidates for future cancer immunotherapies, because they are tumor specific and have been shown to elicit cytotoxic T cell responses. Robust phosphopeptide enrichments that are suitable for low input amounts must be developed to characterize HLA-associated phosphopeptides from clinical samples that are limited by material availability. We present two complementary mass spectrometry-compatible, iron(III)-immobilized metal affinity chromatography (IMAC) methods that use either nitrilotriacetic acid (NTA) or iminodiacetic acid (IDA) in-house-fabricated columns. We developed these protocols to enrich for subfemtomole-level phosphopeptides from cell line and human tissue samples containing picograms of starting material, which is an order of magnitude less material than what is commonly used. In addition, we added a peptide esterification step to increase phosphopeptide specificity from these low-input samples. To date, hundreds of phosphopeptides displayed on melanoma, ovarian cancer, leukemia and colorectal cancer have been identified using these highly selective phosphopeptide enrichment protocols in combination with a program called 'CAD Neutral Loss Finder' that identifies all spectra containing the characteristic neutral loss of phosphoric acid from phosphorylated serine and threonine residues. This methodology enables the identification of HLA-associated phosphopeptides presented by human tissue samples containing as little as nanograms of peptide material in 2 d.


Assuntos
Cromatografia de Afinidade/métodos , Fosfopeptídeos/análise , Antígenos de Histocompatibilidade/metabolismo , Espectrometria de Massas , Fosfopeptídeos/metabolismo
7.
J Am Soc Mass Spectrom ; 26(7): 1256-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25821049

RESUMO

We created a web-based tutorial designed to teach manual interpretation and identification of spectra acquired using electron transfer dissociation (ETD). The tutorial provides an explanation of the ETD fragmentation process with the goal of identifying all of the significant peaks in a spectrum. We discuss determination of the precursor mass and charge state, neutral losses, electron transfer without dissociation (ETnoD), and the mechanisms by which fragment ions are created. Our hope is to provide a tool that presents the information already taught in D.F.H.'s short courses in a way that is easy for any student or researcher in the mass spectrometry community to access. The tutorial may be found at http://www.huntlab.org.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/química , Análise de Sequência de Proteína/métodos
8.
Proteome Sci ; 10(1): 8, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22321509

RESUMO

BACKGROUND: Electron Transfer Dissociation [ETD] can dissociate multiply charged precursor polypeptides, providing extensive peptide backbone cleavage. ETD spectra contain charge reduced precursor peaks, usually of high intensity, and whose pattern is dependent on its parent precursor charge. These charge reduced precursor peaks and associated neutral loss peaks should be removed before these spectra are searched for peptide identifications. ETD spectra can also contain ion-types other than c and z˙. Modifying search strategies to accommodate these ion-types may aid in increased peptide identifications. Additionally, if the precursor mass is measured using a lower resolution instrument such as a linear ion trap, the charge of the precursor is often not known, reducing sensitivity and increasing search times. We implemented algorithms to remove these precursor peaks, accommodate new ion-types in noise filtering routine in OMSSA and to estimate any unknown precursor charge, using Linear Discriminant Analysis [LDA]. RESULTS: Spectral pre-processing to remove precursor peaks and their associated neutral losses prior to protein sequence library searches resulted in a 9.8% increase in peptide identifications at a 1% False Discovery Rate [FDR] compared to previous OMSSA filter. Modifications to the OMSSA noise filter to accommodate various ion-types resulted in a further 4.2% increase in peptide identifications at 1% FDR. Moreover, ETD spectra when searched with charge states obtained from the precursor charge determination algorithm is shown to be up to 3.5 times faster than the general range search method, with a minor 3.8% increase in sensitivity. CONCLUSION: Overall, there is an 18.8% increase in peptide identifications at 1% FDR by incorporating the new precursor filter, noise filter and by using the charge determination algorithm, when compared to previous versions of OMSSA.

9.
Anal Chem ; 84(3): 1781-5, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22182179

RESUMO

Electron transfer dissociation (ETD) has improved the mass spectrometric analysis of proteins and peptides with labile post-translational modifications and larger intact masses. Here, the parameters governing the reaction rate of ETD are examined experimentally. Currently, due to reagent injection and isolation events as well as longer reaction times, ETD spectra require significantly more time to acquire than collision-induced dissociation (CID) spectra (>100 ms), resulting in a trade-off in the dynamic range of tandem MS analyses when ETD-based methods are compared to CID-based methods. Through fine adjustment of reaction parameters and the selection of reagents with optimal characteristics, we demonstrate a drastic reduction in the time taken per ETD event. In fact, ETD can be performed with optimal efficiency in nearly the same time as CID at low precursor charge state (z = +3) and becomes faster at higher charge state (z > +3).


Assuntos
Espectrometria de Massas , Peptídeos/análise , Proteínas/análise , Animais , Transporte de Elétrons , Humanos , Processamento de Proteína Pós-Traducional , Ratos , Suínos
10.
J Am Soc Mass Spectrom ; 20(8): 1435-40, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19362853

RESUMO

Tandem mass spectra (MS/MS) produced using electron transfer dissociation (ETD) differ from those derived from collision-activated dissociation (CAD) in several important ways. Foremost, the predominant fragment ion series are different: c- and z(*)-type ions are favored in ETD spectra while b- and y-type ions comprise the bulk of the fragments in CAD spectra. Additionally, ETD spectra possess charge-reduced precursors and unique neutral losses. Most database search algorithms were designed to analyze CAD spectra, and have only recently been adapted to accommodate c- and z(*)-type ions; therefore, inclusion of these additional spectral features can hinder identification, leading to lower confidence scores and decreased sensitivity. Because of this, it is important to pre-process spectral data before submission to a database search to remove those features that cause complications. Here, we demonstrate the effects of removing these features on the number of unique peptide identifications at a 1% false discovery rate (FDR) using the open mass spectrometry search algorithm (OMSSA). When analyzing two biologic replicates of a yeast protein extract in three total analyses, the number of unique identifications with a approximately 1% FDR increased from 4611 to 5931 upon spectral pre-processing--an increase of approximately 28.6%. We outline the most effective pre-processing methods, and provide free software containing these algorithms.


Assuntos
Algoritmos , Espectrometria de Massas/métodos , Mapeamento de Peptídeos/métodos , Peptídeos/química , Software
11.
J Proteome Res ; 3(3): 621-6, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15253445

RESUMO

We describe the design and performance of a prototype high performance hybrid mass spectrometer. This instrument consists of a linear quadrupole ion trap (QLT) coupled to a Fourier transform ion cyclotron resonance mass analyzer (FTMS). This configuration provides rapid and automated MS and MS/MS analyses, similar to the "data dependent scanning" found on standard 3-D Paul traps, but with substantially improved internal scan dynamic range, mass measurement accuracy, mass resolution, and detection limits. Sequence analysis of peptides at the zeptomole level is described. The recently released, commercial version of this instrument operates in the LC/MS mode (1 s/scan) with a mass resolution of 100 000 and is equipped with automatic gain control to provide mass measurement accuracy of 1-2 ppm without internal standard. Methodology is described that uses this instrument to compare the post-translational modifications present on histone H3 isolated from asynchronously growing cells and cells arrested in mitosis.


Assuntos
Análise de Fourier , Histonas/química , Mitose/fisiologia , Peptídeos/química , Sequência de Aminoácidos , Células HeLa , Humanos , Espectrometria de Massas , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA