Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1177774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601105

RESUMO

Semen cryopreservation is a promising technology employed in preserving high-quality varieties in animal husbandry and is also widely applied in the human sperm bank. However, the compromised qualities, such as decreased sperm motility, damaged membrane structure, and reduced fertilization competency, have significantly hampered the efficient application of this technique. Therefore, it is imperative to depict various molecular changes found in cryopreserved sperm and identify the regulatory network in response to the cryopreservation stress. In this study, semen was collected from three Chinese Merino rams and divided into untreated (fresh semen, FS) and programmed freezing (programmed freezing semen, PS) groups. After measuring different quality parameters, the ultra-low RNA-seq and tandem mass tag-based (TMT) proteome were conducted in both the groups. The results indicated that the motility (82.63% ± 3.55% vs. 34.10% ± 2.90%, p < 0.05) and viability (89.46% ± 2.53% vs. 44.78% ± 2.29%, p < 0.05) of the sperm in the FS group were significantly higher compared to those in the PS group. In addition, 45 upregulated and 291 downregulated genes, as well as 30 upregulated and 48 downregulated proteins, were found in transcriptomics and proteomics data separately. Moreover, three integrated methods, namely, functional annotation and enrichment analysis, Pearson's correlation analysis, and two-way orthogonal partial least squares (O2PLS) analysis, were used for further analysis. The results suggested that various differentially expressed genes and proteins (DEGs and DEPs) were mainly enriched in leishmaniasis and hematopoietic cell lineage, and Fc gamma receptor Ia (FCGR1A) was significantly downregulated in cryopreserved sperm both at mRNA and protein levels in comparison with the fresh counterpart. In addition, top five genes (FCGR1A, HCK, SLX4, ITGA3, and BET1) and 22 proteins could form a distinct network in which genes and proteins were significantly correlated (p < 0.05). Interestingly, FCGR1A also appeared in the top 25 correlation list based on O2PLS analysis. Hence, FCGR1A was selected as the most potential differentially expressed candidate for screening by the three integrated multi-omics analysis methods. In addition, Pearson's correlation analysis indicated that the expression level of FCGR1A was positively correlated with sperm motility and viability. A subsequent experiment was conducted to identify the biological role of FCGR1A in sperm function. The results showed that both the sperm viability (fresh group: 87.65% ± 4.17% vs. 75.8% ± 1.15%, cryopreserved group: 48.15% ± 0.63% vs. 42.45% ± 2.61%, p < 0.05) and motility (fresh group: 83.27% ± 4.15% vs. 70.41% ± 1.07%, cryopreserved group: 45.31% ± 3.28% vs. 35.13% ± 2.82%, p < 0.05) were significantly reduced in fresh and frozen sperm when FCGR1A was blocked. Moreover, the cleavage rate of embryos fertilized by FCGR1A-blocked sperm was noted to be significantly lower in both fresh (95.28% ± 1.16% vs. 90.44% ± 1.56%, p < 0.05) and frozen groups (89.8% ± 1.50% vs. 82.53% ± 1.53%, p < 0.05). In conclusion, our results revealed that the downregulated membrane protein FCGR1A can potentially contribute to the reduced sperm fertility competency in the cryopreserved sheep sperm.

2.
Anim Sci J ; 91(1): e13378, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329195

RESUMO

Interferon-tau (IFNT) regulates maternal recognition during early pregnancy in ruminants. The liver can serve as a hematopoietic organ, and it has immune functions. This study hypothesized whether mRNA and proteins of interferon-stimulated genes (ISGs) induced by early pregnancy are upregulated in maternal liver. Therefore, we determined the expression of interferon-stimulated gene 15-kDa protein (ISG15), 2',5'-oligoadenylate synthetase 1 (OAS1), myxovirus resistance protein 1 (MX1), interferon-gamma-inducible protein 10 (IP-10), and signal transducer and activator of transcription 1 (STAT1) in maternal livers during early pregnancy in sheep. Ovine livers were sampled on day 16 of the estrous cycle, and days 13, 16, and 25 of pregnancy, and expression of ISGs was detected by quantitative real-time PCR, Western blot, and immunohistochemistry analysis. Our results showed that there were increases in expression of the mRNA and proteins of ISG15, OAS1, IP-10, STAT1, and MX1 during early pregnancy. STAT1 protein was limited to the hepatocytes, and endothelial cells of proper hepatic arteries and hepatic portal veins. In conclusion, the upregulation of ISG15, OAS1, IP-10, STAT1, and MX1 proteins may be implicated in maternal hepatic immune adjustment and other functions during early pregnancy in sheep.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Fígado/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Prenhez/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Ovinos/genética , Ovinos/fisiologia , Ubiquitinas/genética , Ubiquitinas/metabolismo , Animais , Ciclo Estral/genética , Ciclo Estral/metabolismo , Feminino , Fígado/imunologia , Gravidez , Prenhez/imunologia , Ovinos/imunologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA