Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
iScience ; 25(1): 103706, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35059610

RESUMO

Ryanodine receptors (RyRs) are large, intracellular ion channels that control Ca2+ release from the sarco/endoplasmic reticulum. Dysregulation of RyRs in skeletal muscle, heart, and brain has been implicated in various muscle pathologies, arrhythmia, heart failure, and Alzheimer's disease. Therefore, there is considerable interest in therapeutically targeting RyRs to normalize Ca2+ homeostasis in scenarios involving RyR dysfunction. Here, a simple invertebrate screening platform was used to discover new chemotypes targeting RyRs. The approach measured Ca2+ signals evoked by cyclic adenosine 5'-diphosphate ribose, a second messenger that sensitizes RyRs. From a 1,534-compound screen, FLI-06 (currently described as a Notch "inhibitor") was identified as a potent blocker of RyR activity. Two closely related tyrosine kinase inhibitors that stimulate and inhibit Ca2+ release through RyRs were also resolved. Therefore, this simple screen yielded RyR scaffolds tractable for development and revealed an unexpected linkage between RyRs and trafficking events in the early secretory pathway.

2.
Neurosci Biobehav Rev ; 128: 633-647, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186153

RESUMO

Brain development is a dynamic and lengthy process that includes cell proliferation, migration, neurogenesis, gliogenesis, synaptogenesis, and pruning. Disruption of any of these developmental events can result in long-term outcomes ranging from brain structural changes, to cognitive and behavioral abnormality, with the mechanisms largely unknown. Emerging evidence suggests non-coding RNAs (ncRNAs) as pivotal molecules that participate in normal brain development and neurodevelopmental disorders. NcRNAs such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are transcribed from the genome but not translated into proteins. Many ncRNAs have been implicated as tuners of cell fate. In this review, we started with an introduction of the current knowledge of lncRNAs and miRNAs, and their potential roles in brain development in health and disorders. We then reviewed and discussed the evidence of ncRNA involvement in abnormal brain development resulted from alcohol, anesthetic drugs, nicotine, and viral infections. The complex connections among these ncRNAs were also discussed, along with potential overlapping ncRNA mechanisms, possible pharmacological targets for therapeutic/neuroprotective interventions, and potential biomarkers for brain developmental disorders.


Assuntos
Anestésicos , Encefalopatias , MicroRNAs , Viroses , Humanos , Nicotina , RNA não Traduzido/genética
3.
Transl Res ; 229: 5-23, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33045408

RESUMO

Metformin is the first-line medication for treatment of type 2 diabetes and has been shown to reduce heart damage and death. However, mechanisms by which metformin protects human heart remain debated. The aim of the study was to evaluate the cardioprotective effect of metformin on cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) and mitochondria isolated from human cardiac tissue. At concentrations ≤2.5 mM, metformin significantly increased oxygen consumption rate (OCR) in the hiPSC-CMs by activating adenosine monophosphate activated protein kinase (AMPK)-dependent signaling and enhancing mitochondrial biogenesis. This effect was abrogated by compound C, an inhibitor of AMPK. At concentrations >5 mM, metformin inhibited the cellular OCR and triggered metabolic reprogramming by enhancing glycolysis and glutaminolysis in the cardiomyocytes. In isolated cardiac mitochondria, metformin did not increase the OCR at any concentrations but inhibited the OCR starting at 1 mM through direct inhibition of electron-transport chain complex I. This was associated with reduction of superoxide production and attenuation of Ca2+-induced mitochondrial permeability transition pore (mPTP) opening in the mitochondria. Thus, in human heart, metformin might improve cardioprotection due to its biphasic effect on mitochondria: at low concentrations, it activates mitochondrial biogenesis via AMPK signaling and increases the OCR; at high concentrations, it inhibits the respiration by directly affecting the activity of complex I, reduces oxidative stress and delays mPTP formation. Moreover, metformin at high concentrations causes metabolic reprogramming by enhancing glycolysis and glutaminolysis. These effects can be a beneficial adjunct to patients with impaired endogenous cardioprotective responses.


Assuntos
Cardiotônicos/farmacologia , Metformina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Idoso , Cardiotônicos/administração & dosagem , Células Cultivadas , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Superóxidos/metabolismo
4.
Cells ; 9(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003295

RESUMO

Stem cell science is among the fastest moving fields in biology, with many highly promising directions for translatability. To centralize and contextualize some of the latest developments, this Special Issue presents state-of-the-art research of adult stem cells, induced pluripotent stem cells (iPSCs), and embryonic stem cells as well as cancer stem cells. The studies we include describe efficient differentiation protocols of generation of chondrocytes, adipocytes, and neurons, maturation of iPSC-derived cardiomyocytes and neurons, dynamic characterization of iPSC-derived 3D cerebral organoids, CRISPR/Cas9 genome editing, and non-viral minicircle vector-based gene modification of stem cells. Different applications of stem cells in disease modeling are described as well. This volume also highlights the most recent developments and applications of stem cells in basic science research and disease treatments.


Assuntos
Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes Induzidas/transplante , Edição de Genes/métodos , Humanos , Neurônios/patologia , Neurônios/transplante , Organoides/transplante , Pesquisa com Células-Tronco
5.
Cells ; 9(5)2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456176

RESUMO

BACKGROUND: The development of 3D cerebral organoid technology using human-induced pluripotent stem cells (iPSCs) provides a promising platform to study how brain diseases are appropriately modeled and treated. So far, understanding of the characteristics of organoids is still in its infancy. The current study profiled, for the first time, the electrophysiological properties of organoids at molecular and cellular levels and dissected the potential age equivalency of 2-month-old organoids to human ones by a comparison of gene expression profiles among cerebral organoids, human fetal and adult brains. RESULTS: Cerebral organoids exhibit heterogeneous gene and protein markers of various brain cells, such as neurons, astrocytes, and vascular cells (endothelial cells and smooth muscle cells) at 2 months, and increases in neural, glial, vascular, and channel-related gene expression over a 2-month differentiation course. Two-month organoids exhibited action potentials, multiple channel activities, and functional electrophysiological responses to the anesthetic agent propofol. A bioinformatics analysis of 20,723 gene expression profiles showed the similar distance of gene profiles in cerebral organoids to fetal and adult brain tissues. The subsequent Ingenuity Pathway Analysis (IPA) of select canonical pathways related to neural development, network formation, and electrophysiological signaling, revealed that only calcium signaling, cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signaling in neurons, glutamate receptor signaling, and synaptogenesis signaling were predicted to be downregulated in cerebral organoids relative to fetal samples. Nearly all cerebral organoid and fetal pathway phenotypes were predicted to be downregulated compared with adult tissue. CONCLUSIONS: This novel study highlights dynamic development, cellular heterogeneity and electrophysiological activity. In particular, for the first time, electrophysiological drug response recapitulates what occurs in vivo, and neural characteristics are predicted to be highly similar to the human brain, further supporting the promising application of the cerebral organoid system for the modeling of the human brain in health and disease. Additionally, the studies from these characterizations of cerebral organoids in multiple levels and the findings from gene comparisons between cerebral organoids and humans (fetuses and adults) help us better understand this cerebral organoid-based cutting-edge platform and its wide uses in modeling human brain in terms of health and disease, development, and testing drug efficacy and toxicity.


Assuntos
Encéfalo/citologia , Fenômenos Eletrofisiológicos , Feto/citologia , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Adulto , Biomarcadores/metabolismo , Diferenciação Celular/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Sinapses/metabolismo
6.
J Biomater Sci Polym Ed ; 31(6): 695-711, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31914358

RESUMO

Developing the hybrid nanosystems for controlled drug release is still a challenging task. In this work, pH-responsive core-shell nanocomposites have been prepared by the growth of zeolitic imidazolate framework-8 (ZIF-8) on the surface of polymeric aggregates self-assembled from poly(ε-caprolactone)-block-poly (quaternized vinylbenzyl chloride/bipyridine) (PCL-b-q(PVBC/BPy), BCP for short) in water. The core of the micelles or the inner cavity of vesicles serves as the drug storage reservoir for the doxorubicin hydrochloride (DOX) and the ZIF-8 shells act as the gatekeepers to prevent drug premature release at physiological environment. Upon pH stimulus, the core-shell nanocomposites (BCP@ZIF-8) show a retarded drug release behavior compared with DOX-loaded polymeric aggregates counterparts (without the shell of ZIF-8). Moreover, the as-prepared nanocomposites perform good biocompatibility towards MCF-7 cell. Meanwhile, the DOX-loaded BCP@ZIF-8 nanocomposites present lower cytotoxicity compared with DOX-loaded BCP and free DOX. The confocal microscopy study shows the core-shell nanocomposites could be efficiently internalized by cancer cells, and the loaded DOX could be successfully released under acidic intracellular environment. The above result shows that the core-shell nanocomposite could be a promising candidate for pH-responsive drug delivery system in the cancer therapy.


Assuntos
Portadores de Fármacos/química , Imidazóis/química , Estruturas Metalorgânicas/química , Nanocompostos/química , Polímeros/química , Preparações de Ação Retardada , Doxorrubicina/química , Portadores de Fármacos/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Micelas , Nanocompostos/toxicidade , Água/química
7.
Stem Cells ; 38(2): 246-260, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31648402

RESUMO

Physical exercise-induced enhancement of learning and memory and alleviation of age-related cognitive decline in humans have been widely acknowledged. However, the mechanistic relationship between exercise and cognitive improvement remains largely unknown. In this study, we found that exercise-elicited cognitive benefits were accompanied by adaptive hippocampal proteasome activation. Voluntary wheel running increased hippocampal proteasome activity in adult and middle-aged mice, contributing to an acceleration of neurogenesis that could be reversed by intrahippocampal injection of the proteasome inhibitor MG132. We further found that increased levels of insulin-like growth factor-1 (IGF-1) in both serum and hippocampus may be essential for exercise-induced proteasome activation. Our in vitro study demonstrated that IGF-1 stimulated proteasome activity in cultured adult neural progenitor cells (NPCs) by promoting nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), followed by elevated expressions of proteasome subunits such as PSMB5. In contrast, pretreating adult mice with the selective IGF-1R inhibitor picropodophyllin diminished exercise-induced neurogenesis, concurrent with reduced Nrf2 nuclear translocation and proteasome activity. Likewise, lowering Nrf2 expression by RNA interference with bilateral intrahippocampal injections of recombinant adeno-associated viral particles significantly suppressed exercise-induced proteasome activation and attenuated cognitive function. Collectively, our work demonstrates that proteasome activation in hippocampus through IGF-1/Nrf2 signaling is a key adaptive mechanism underlying exercise-related neurogenesis, which may serve as a potential targetable pathway in neurodegeneration.


Assuntos
Exercício Físico/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurogênese/genética , Animais , Humanos , Masculino , Camundongos , Transfecção
8.
J Mater Chem B ; 7(38): 5789-5796, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31483429

RESUMO

Near-infrared (NIR) irradiation responsive drug delivery systems have many advantages, which have attracted extensive interest from researchers. In this study, a NIR-triggered drug release system was established by grafting upper critical solution temperature (UCST) polymers on the surface of hollow mesoporous silica nanoparticles (HMSNs) followed by treatment with the photothermal conversion agent indocyanine green (ICG). The as-prepared UCST polymers showed the clearing temperature of 45 °C, which were advantageous to serve as gatekeepers in the physiological environment (37 °C). Under NIR irradiation, the temperature of the solution was elevated above the clearing point due to the presence of ICG; consequently, the collapsed UCST polymer chains became more hydrophilic; this resulted in the exposure of the mesoporous channels of the HMSNs and achievement of a burst drug release. Moreover, this NIR-responsive delivery system showed good biocompatibility and high anticancer efficiency towards the MCF-7 cancer cells upon exposure to NIR irradiation. In addition, a synergistic effect of thermal and chemo treatment has been achieved by the application of NIR irradiation since cancer cells are more vulnerable to high temperatures than normal cells.


Assuntos
Verde de Indocianina/metabolismo , Raios Infravermelhos , Nanopartículas/química , Polímeros/química , Dióxido de Silício/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Células MCF-7 , Microscopia Confocal , Nanopartículas/toxicidade , Porosidade , Propriedades de Superfície , Temperatura
9.
ACS Appl Bio Mater ; 2(8): 3648-3658, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35030751

RESUMO

Combination of photodynamic therapy and chemotherapeutic drugs is a promising strategy to achieve enhanced anticancer effect. In this study, a novel reactive oxygen species (ROS) synergistic pH/H2O2-responsive nanocomposite has been prepared from the self-assembly of poly(l-lactic acid)-block-poly(sodium 4-styrenesulfonate) in aqueous solution, followed by addition of ferric citrate (Cit-Fe(III)) through electrostatic interaction and growing ZIF-8 among the surface of the particles. Upon H2O2 and visible light stimuli, efficient ROS such as hydroxyl radicals (•OH) and sulfate radicals (SO4•-) can be generated through the catalyst of Cit-Fe(III). Meanwhile, sulfonate-containing polymeric vesicles are disassembled through oxidization by ROS, and the encapsulated doxorubicin (DOX) will gradually diffuse into the ZIF-8 (one type of metal-organic framework, MOF) channels. The gatekeepers, ZIF-8, will collapse only under low pH condition, and a burst drug release is achieved. In the presence of H2O2 and pH stimuli upon visible light exposure, the prepared DOX-loaded nanocomposite exhibits good selectivity for both generating ROS and releasing drug in tumor cell instead of normal cell. The merits of nanocomposites such as good biocompatibility and especially the synergistic effect of chemo-photodynamic therapy make the material a highly promising candidate for drug delivery system in chemo-photodynamic therapy.

10.
J Biomater Sci Polym Ed ; 30(3): 202-214, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30587090

RESUMO

Herein, for rate-tunable controlled release, pH and redox dual responsive polymeric vesicles were constructed based on host-guest interaction between a water soluble pillar[5]arene (WP5) and a paraquat-containing block copolymer (BCP) in water. The yielding polymeric vesicles can be further applied in the controlled release of a hydrophilic model drug, doxorubicin hydrochloride (DOX). The drug release rate is regulated depending on the type of single stimulus or the combination of two stimuli. Meanwhile, DOX-loaded polymeric vesicles present anticancer activity in vitro comparable to free DOX under the studied conditions, which may be important for applications in the therapy of cancers as a controlled-release drug carrier.


Assuntos
Calixarenos/química , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Paraquat/química , Polímeros/química , Doxorrubicina/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Polimerização , Solubilidade , Água
11.
BMC Cardiovasc Disord ; 18(1): 197, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30342478

RESUMO

Long noncoding RNAs (lncRNAs) are endogenous RNA transcripts longer than 200 nucleotides which regulate epigenetically the expression of genes but do not have protein-coding potential. They are emerging as potential key regulators of diabetes mellitus and a variety of cardiovascular diseases. Diabetic cardiomyopathy (DCM) refers to diabetes mellitus-elicited structural and functional abnormalities of the myocardium, beyond that caused by ischemia or hypertension. The purpose of this review was to summarize current status of lncRNA research for DCM and discuss the challenges and possible strategies of lncRNA research for DCM. A systemic search was performed using PubMed and Google Scholar databases. Major conference proceedings of diabetes mellitus and cardiovascular disease occurring between January, 2014 to August, 2018 were also searched to identify unpublished studies that may be potentially eligible. The pathogenesis of DCM involves elevated oxidative stress, myocardial inflammation, apoptosis, and autophagy due to metabolic disturbances. Thousands of lncRNAs are aberrantly regulated in DCM. Manipulating the expression of specific lncRNAs, such as H19, metastasis-associated lung adenocarcinoma transcript 1, and myocardial infarction-associated transcript, with genetic approaches regulates potently oxidative stress, myocardial inflammation, apoptosis, and autophagy and ameliorates DCM in experimental animals. The detail data regarding the regulation and function of individual lncRNAs in DCM are limited. However, lncRNAs have been considered as potential diagnostic and therapeutic targets for DCM. Overexpression of protective lncRNAs and knockdown of detrimental lncRNAs in the heart are crucial for defining the role and function of lncRNAs of interest in DCM, however, they are technically challenging due to the length, short life, and location of lncRNAs. Gene delivery vectors can provide exogenous sources of cardioprotective lncRNAs to ameliorate DCM, and CRISPR-Cas9 genome editing technology may be used to knockdown specific lncRNAs in DCM. In summary, current data indicate that LncRNAs are a vital regulator of DCM and act as the promising diagnostic and therapeutic targets for DCM.


Assuntos
Cardiomiopatias Diabéticas/genética , Miocárdio/metabolismo , RNA Longo não Codificante/genética , Animais , Cardiomiopatias Diabéticas/diagnóstico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/terapia , Regulação da Expressão Gênica , Terapia Genética/métodos , Humanos , Miocárdio/patologia , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêutico
12.
Exp Brain Res ; 235(9): 2627-2638, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28573310

RESUMO

Injury-induced neuropathic pain remains a serious clinical problem. Recent studies indicate that bone marrow stromal cells (BMSCs) effectively attenuate chronic neuropathic pain in animal models. Here, we examined the therapeutic effect of intrathecal administration of BMSCs isolated from young (1-month-old) rats on pain hypersensitivity induced by tibial nerve injury. Cerebrospinal fluid (CSF) was collected and analyzed to examine the effect of BMSC administration on the expression of 67 soluble factors in CSF. A sustained remission in injury-induced mechanical hyperalgesia was observed in BMSC-treated rats but not in control animals. Engrafted BMSCs were observed in spinal cords and dorsal root ganglia at 5 weeks after cell injection. Injury significantly decreased the levels of six soluble factors in CSF: intercellular adhesion molecule 1 (ICAM-1), interleukin-1ß (IL-1ß), IL-10, hepatocyte growth factor (HGF), Nope protein, and neurogenic locus notch homolog protein 1 (Notch-1). Intrathecal BMSCs significantly attenuated the injury-induced reduction of ICAM-1, IL-1ß, HGF, IL-10, and Nope. This study adds to evidence supporting the use of intrathecal BMSCs in pain control and shows that this effect is accompanied by the reversal of injury-induced reduction of multiple CSF soluble factors. Our findings suggest that these soluble factors may be potential targets for treating chronic pain.


Assuntos
Citocinas/líquido cefalorraquidiano , Gânglios Espinais , Hiperalgesia/líquido cefalorraquidiano , Hiperalgesia/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Neuralgia/líquido cefalorraquidiano , Neuralgia/terapia , Medula Espinal , Animais , Modelos Animais de Doenças , Gânglios Espinais/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia
13.
Anesth Analg ; 125(1): 241-254, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28622174

RESUMO

BACKGROUND: Growing animal evidence demonstrates that prolonged exposure to propofol during brain development induces widespread neuronal cell death, but there is little information on the role of astrocytes. Astrocytes can release neurotrophic growth factors such as brain-derived neurotrophic factor (BDNF), which can exert the protective effect on neurons in paracrine fashion. We hypothesize that during propofol anesthesia, BDNF released from developing astrocytes may not be sufficient to prevent propofol-induced neurotoxicity. METHODS: Hippocampal astrocytes and neurons isolated from neonatal Sprague Dawley rats were exposed to propofol at a clinically relevant dose of 30 µM or dimethyl sulfoxide as control for 6 hours. Propofol-induced cell death was determined by propidium iodide (PI) staining in astrocyte-alone cultures, neuron-alone cultures, or cocultures containing either low or high density of astrocytes (1:9 or 1:1 ratio of astrocytes to neurons ratio [ANR], respectively). The astrocyte-conditioned medium was collected 12 hours after propofol exposure and measured by protein array assay. BDNF concentration in astrocyte-conditioned medium was quantified using enzyme-linked immunosorbent assay. Neuron-alone cultures were treated with BDNF, tyrosine receptor kinase B inhibitor cyclotraxin-B, glycogen synthase kinase 3ß (GSK3ß) inhibitor CHIR99021, or mitochondrial fission inhibitor Mdivi-1 before propofol exposure. Western blot was performed for quantification of the level of protein kinase B and GSK3ß. Mitochondrial shape was visualized through translocase of the outer membrane 20 staining. RESULTS: Propofol increased cell death in neurons by 1.8-fold (% of PI-positive cells [PI%] = 18.6; 95% confidence interval [CI], 15.2-21.9, P < .05) but did not influence astrocyte viability. The neuronal death was attenuated by a high ANR (1:1 cocultures; fold change [FC] = 1.17, 95% CI, 0.96-1.38, P < .05), but not with a low ANR [1:9 cocultures; FC = 1.87, 95% CI, 1.48-2.26, P > .05]). Astrocytes secreted BDNF in a cell density-dependent way and propofol decreased BDNF secretion from astrocytes. Administration of BDNF, CHIR99021, or Mdivi-1 significantly attenuated the propofol-induced neuronal death and aberrant mitochondria in neuron-alone cultures (FC = 0.8, 95% CI, 0.62-0.98; FC = 1.22, 95% CI, 1.11-1.32; FC = 1.35, 95% CI, 1.16-1.54, respectively, P < .05) and the cocultures with a low ANR (1:9; FC = 0.85, 95% CI, 0.74-0.97; FC = 1.08, 95% CI, 0.84-1.32; FC = 1.25, 95% CI, 1.1-1.39, respectively, P < .05). Blocking BDNF receptor or protein kinase B activity abolished astrocyte-induced neuroprotection in the cocultures with a high ANR (1:1). CONCLUSIONS: Astrocytes attenuate propofol-induced neurotoxicity through BDNF-mediated cell survival pathway suggesting multiple neuroprotective strategies such as administration of BDNF, astrocyte-conditioned medium, decreasing mitochondrial fission, or inhibition of GSK3ß.


Assuntos
Anestésicos Intravenosos/toxicidade , Astrócitos/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Propofol/toxicidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/enzimologia , Astrócitos/patologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Relação Dose-Resposta a Droga , Hipocampo/enzimologia , Hipocampo/patologia , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Neurônios/enzimologia , Neurônios/patologia , Proteínas Tirosina Quinases/metabolismo , Ratos Sprague-Dawley , Receptor trkB , Transdução de Sinais/efeitos dos fármacos
14.
Plast Reconstr Surg ; 137(4): 1181-1190, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27018673

RESUMO

BACKGROUND: The cause of the rare fat distribution disorder multiple symmetric lipomatosis is unknown. Independent reports suggest a higher proliferative activity, hormone resistance, and involvement of mitochondrial function in the disease. METHODS: The authors performed morphologic comparison of affected and unaffected tissues in five unrelated patients and generated adipose-derived stem cell cultures from the tissue samples and characterized them as a possible cellular model of multiple symmetric lipomatosis evolution. The authors investigated proliferative activity and the expression of genes relevant to disease processes. RESULTS: There was no difference in the morphologic appearance and the surface marker profile. Stem cells from lipomatous tissue showed significantly higher proliferative activity. Polymerase chain reaction arrays showed marked changes in genes associated with proliferation, hormonal regulation, and mitochondria. The authors show that multiple symmetric lipomatosis tissue is morphologically and histologically different from regular subcutaneous fat. CONCLUSIONS: This study indicates an involvement of mesenchymal stem cells in the pathogenesis of multiple symmetric lipomatosis and that the evolution of multiple symmetric lipomatosis tissue is a process driven by an inherent defect of the respective cell clone(s). Further molecular genetics and functional analysis will be required to unravel the pathogenetic mechanism underlying the derailment in fat cell metabolism and proliferation. Here, the authors show for the first time that adipose-derived stem cells exhibit many characteristics previously described for native multiple symmetric lipomatosis fat tissue and propose that they are therefore an excellent tool for further functional investigations in multiple symmetric lipomatosis and other disorders of the fat tissue. CLINICAL QUESTION/LEVEL OF EVIDENCE: Risk, V.


Assuntos
Lipomatose Simétrica Múltipla/genética , Células-Tronco Mesenquimais/fisiologia , Gordura Subcutânea/fisiopatologia , Transcriptoma , Idoso , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Feminino , Perfilação da Expressão Gênica , Humanos , Lipomatose Simétrica Múltipla/patologia , Lipomatose Simétrica Múltipla/fisiopatologia , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Gordura Subcutânea/patologia
15.
Mol Pain ; 11: 5, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25888914

RESUMO

BACKGROUND: Cell-based therapy may hold promise for treatment of chronic pain. Mesenchymal stem cells (MSCs) are readily available and robust, and their secretion of therapeutic peptides can be enhanced by genetically engineering. We explored the analgesic potential of transplanting bone marrow-derived MSCs that have been transduced with lentivectors. To optimize efficacy and safety, primary sensory neurons were targeted by MSC injection into the dorsal root ganglia (DRGs). RESULTS: MSCs were transduced using lentivectors to express enhanced green fluorescent protein (EGFP) or to co-express the analgesic peptide glial cell line-derived neurotrophic factor (GDNF) and EGFP by a viral 2A bicistronic transgene cassette. Engineered MSCs were injected into the 4(th) lumbar (L4) and L5 DRGs of adult allogeneic rats to evaluate survival in the DRGs. MSCs were detected by immunofluorescence staining up to 2-3 weeks after injection, distributed in the extracellular matrix space without disrupting satellite glial cell apposition to sensory neurons, suggesting well-tolerated integration of engrafted MSCs into DRG tissue. To examine their potential for inhibiting development of neuropathic pain, MSCs were injected into the L4 and L5 DRGs ipsilateral to a spinal nerve ligation injury. Animals injected with GDNF-engineered MSCs showed moderate but significant reduction in mechanical allodynia and hyperalgesia compared to controls implanted with MSCs expressing EGFP alone. We also observed diminished long-term survival of allografted MSCs at 3 weeks, and the development of a highly-proliferating population of MSCs in 12% of DRGs after transplantation. CONCLUSIONS: These data indicate that genetically modified MSCs secreting analgesic peptides could potentially be developed as a novel DRG-targeted cell therapy for treating neuropathic pain. However, further work is needed to address the challenges of MSC survival and excess proliferation, possibly with trials of autologous MSCs, evaluation of clonally selected populations of MSCs, and investigation of regulation of MSC proliferation.


Assuntos
Analgesia , Gânglios Espinais/transplante , Células-Tronco Mesenquimais/citologia , Neuralgia/terapia , Neurônios Aferentes/citologia , Analgesia/métodos , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Gânglios Espinais/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais , Neuralgia/genética , Neuralgia/metabolismo , Manejo da Dor/métodos , Ratos Sprague-Dawley , Nervos Espinhais/metabolismo
16.
Cell Transplant ; 24(12): 2491-504, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25562386

RESUMO

Type 1 diabetes mellitus (T1DM) is the most common type of diabetes in children and adolescents. Diabetic subjects are more likely to experience a myocardial infarction compared to nondiabetic subjects. In recent years, induced pluripotent stem cells (iPSCs) have received increasing attention from basic scientists and clinicians and hold promise for myocardial regeneration due to their unlimited proliferation potential and differentiation capacity. However, cardiomyogenesis of type 1 diabetic donor-derived iPSCs (T1DM-iPSCs) has not been investigated yet. The aim of the study was to comparatively analyze cardiomyocyte (CM) differentiation capacity of nondiabetic donor-derived iPSCs (N-iPSCs) and T1DM-iPSCs. The differentiated CMs were confirmed by both expression of cardiac-specific markers and presence of cardiac action potential. Since mitochondrial bioenergetics is vital to every aspect of CM function, extracellular acidification rates and oxygen consumption rates were measured using Seahorse extracellular flux analyzer. The results showed that N-iPSCs and T1DM-iPSCs demonstrated similar capacity of differentiation into spontaneously contracting CMs exhibiting nodal-, atrial-, or ventricular-like action potentials. Differentiation efficiency was up to 90%. In addition, the CMs differentiated from N-iPSCs and T1DM-iPSCs (N-iPSC-CMs and T1DM-iPSC-CMs, respectively) showed 1) well-regulated glucose utilization at the level of glycolysis and mitochondrial oxidative phosphorylation and 2) the ability to switch metabolic pathways independent of extracellular glucose concentration. Collectively, we demonstrate for the first time that T1DM-iPSCs can differentiate into functional CMs with well-regulated glucose utilization as shown in N-iPSCs, suggesting that T1DM-iPSC-CMs might be a promising autologous cell source for myocardial regeneration in type 1 diabetes patients.


Assuntos
Diferenciação Celular/fisiologia , Diabetes Mellitus Tipo 1/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Desenvolvimento Muscular/fisiologia , Miócitos Cardíacos/citologia , Organogênese/fisiologia , Potenciais de Ação/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Biomarcadores/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Glucose/metabolismo , Glicólise/fisiologia , Humanos , Isoproterenol/farmacologia , Mitocôndrias/metabolismo , Infarto do Miocárdio/terapia , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Regeneração/fisiologia
17.
Cell Mol Life Sci ; 72(10): 2005-22, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25504289

RESUMO

The regulation of cardiac differentiation is critical for maintaining normal cardiac development and function. The precise mechanisms whereby cardiac differentiation is regulated remain uncertain. Here, we have identified a GATA-4 target, EGF, which is essential for cardiogenesis and regulates cardiac differentiation in a dose- and time-dependent manner. Moreover, EGF demonstrates functional interaction with GATA-4 in inducing the cardiac differentiation of P19CL6 cells in a time- and dose-dependent manner. Biochemically, GATA-4 forms a complex with STAT3 to bind to the EGF promoter in response to EGF stimulation and cooperatively activate the EGF promoter. Functionally, the cooperation during EGF activation results in the subsequent activation of cyclin D1 expression, which partly accounts for the lack of additional induction of cardiac differentiation by the GATA-4/STAT3 complex. Thus, we propose a model in which the regulatory cascade of cardiac differentiation involves GATA-4, EGF, and cyclin D1.


Assuntos
Diferenciação Celular/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Fator de Transcrição GATA4/metabolismo , Coração/embriologia , Modelos Biológicos , Miocárdio/citologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Técnicas Histológicas , Imunoprecipitação , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
18.
Physiol Genomics ; 46(21): 789-97, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25159851

RESUMO

MicroRNAs (miRNAs or miRs) are endogenous, small RNA molecules that suppress expression of targeted mRNA. miR-21, one of the most extensively studied miRNAs, is importantly involved in divergent pathophysiological processes relating to ischemia/reperfusion (I/R) injury, such as inflammation and angiogenesis. The role of miR-21 in renal I/R is complex, with both protective and pathological pathways being regulated by miR-21. Preconditioning-induced upregulation of miR-21 contributes to the protection against subsequent renal I/R injury through the targeting of genes such as the proapoptotic gene programmed cell death 4 and interactions between miR-21 and hypoxia-inducible factor. Conversely, long-term elevation of miR-21 may be detrimental to the organ by promoting the development of renal interstitial fibrosis following I/R injury. miR-21 is importantly involved in several pathophysiological processes related to I/R injury including inflammation and angiogenesis as well as the biology of stem cells that could be used to treat I/R injury; however, the effect of miR-21 on these processes in renal I/R injury remains to be studied.


Assuntos
Isquemia/genética , MicroRNAs/fisiologia , Traumatismo por Reperfusão/genética , Animais , Sobrevivência Celular/genética , Fibrose/genética , Regulação da Expressão Gênica , Humanos , Hipóxia/genética , Inflamação/genética , Precondicionamento Isquêmico , Rim/irrigação sanguínea , MicroRNAs/genética , Neovascularização Fisiológica/genética , Transplante de Células-Tronco
19.
Anesthesiology ; 117(4): 735-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22820846

RESUMO

INTRODUCTION: Anesthetic preconditioning protects cardiomyocytes from oxidative stress-induced injury, but it is ineffective in patients with diabetes mellitus. To address the role of hyperglycemia in the inability of diabetic individuals to be preconditioned, we used human cardiomyocytes differentiated from induced pluripotent stem cells generated from patients with or without type 2 diabetes mellitus (DM-iPSC- and N-iPSC-CMs, respectively) to investigate the efficacy of preconditioning in varying glucose conditions (5, 11, and 25 mM). METHODS: Induced pluripotent stem cells were induced to generate cardiomyocytes by directed differentiation. For subsequent studies, cardiomyocytes were identified by genetic labeling with enhanced green fluorescent protein driven by a cardiac-specific promoter. Cell viability was analyzed by lactate dehydrogenase assay. Confocal microscopy was utilized to measure opening of the mitochondrial permeability transition pore and the mitochondrial adenosine 5'-triphosphate-sensitive potassium channels. RESULTS: Isoflurane (0.5 mM) preconditioning protected N-iPSC- and DM-iPSC-CMs from oxidative stress-induced lactate dehydrogenase release and mitochondrial permeability transition pore opening in 5 mM and 11 mM glucose. Isoflurane triggered mitochondrial adenosine-5'-triphosphate-sensitive potassium channel opening in N-iPSC-CMs in 5 mM and 11 mM glucose and in DM-iPSC-CMs in 5 mM glucose; 25 mM glucose disrupted anesthetic preconditioning-mediated protection in DM-iPSC- and N-iPSC-CMs. CONCLUSIONS: The opening of mitochondrial adenosine 5'-triphosphate-sensitive potassium channels are disrupted in DM-iPSC-CMs in 11 mM and 25 mM glucose and in N-iPSC-CMs in 25 mM glucose. Cardiomyocytes derived from healthy donors and patients with a specific disease, such as diabetes in this study, open possibilities in studying genotype- and phenotype-related pathologies in a human-relevant model.


Assuntos
Anestésicos/farmacologia , Hiperglicemia/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Miosinas Cardíacas/genética , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 2/sangue , Fibroblastos , Imunofluorescência , Vetores Genéticos , Humanos , Isoflurano/farmacologia , L-Lactato Desidrogenase/metabolismo , Lentivirus/genética , Potenciais da Membrana/efeitos dos fármacos , Microdissecção , Microscopia Confocal , Membranas Mitocondriais/efeitos dos fármacos , Cadeias Leves de Miosina/genética , Permeabilidade
20.
Biol Cell ; 103(4): 197-208, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21332447

RESUMO

BACKGROUND INFORMATION: Although MSCs (mesenchymal stem cells) and fibroblasts have been well studied, differences between these two cell types are not fully understood. We therefore comparatively analysed antigen and gene profiles, colony-forming ability and differentiation potential of four human cell types in vitro: commercially available skin-derived fibroblasts [hSDFs (human skin-derived fibroblasts)], adipose tissue-derived stem cells [hASCs (human adipose tissue-derived stem cells)], embryonic lung fibroblasts (WI38) and dermal microvascular endothelial cells [hECs (human dermal microvascular endothelial cells)]. RESULTS: hSDFs, hASCs and WI38 exhibited a similar spindle-like morphology and expressed same antigen profiles: positive for MSC markers (CD44, CD73 and CD105) and fibroblastic markers [collagen I, HSP47 (heat shock protein 47), vimentin, FSP (fibroblast surface protein) and αSMA (α smooth muscle actin)], and negative for endothelial cell marker CD31 and haemopoietic lineage markers (CD14 and CD45). We further analysed 90 stem cell-associated gene expressions by performing real-time PCR and found a more similar gene expression pattern between hASCs and hSDFs than between hSDFs and WI38. The expression of embryonic stem cell markers [OCT4, KLF4, NANOG, LIN28, FGF4 (fibroblast growth factor 4) and REST] in hASCs and hSDFs was observed to differ more than 2.5-fold as compared with WI38. In addition, hSDFs and hASCs were able to form colonies and differentiate into adipocytes, osteoblasts and chondrocytes in vitro, but not WI38. Moreover, single cell-derived hSDFs and hASCs obtained by clonal expansion were able to differentiate into adipocytes and osteoblasts. However, CD31 positive hECs did not show differentiation potential. CONCLUSIONS: These findings suggest that (i) so-called commercially available fibroblast preparations from skin (hSDFs) consist of a significant number of cells with differentiation potential apart from terminally differentiated fibroblasts; (ii) colony-forming capacity and differentiation potential are specific important properties that discriminate MSCs from fibroblasts (WI38), while conventional stem cell properties such as plastic adherence and the expression of CD44, CD90 and CD105 are unspecific for stem cells.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/citologia , Adipócitos/citologia , Adipócitos/metabolismo , Adulto , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Fibroblastos/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA