Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(1): 1094-1113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032526

RESUMO

Gas explosions (GE) are a prevalent and widespread cause of traumatic brain injury (TBI) in coal miners. However, the impact and mechanism of curcumin on GE-induced TBI in rats remain unclear. In this study, we simulated GE-induced TBI in rats and administered curcumin orally at a dose of 100 mg/kg every other day for 7 days to modulate the gut microbiota in TBI rats. We employed 16S rRNA sequencing and LC-MS/MS metabolomic analysis to investigate changes in the intestinal flora and its metabolic profile. Additionally, we utilized ELISA, protein assays, and immunohistochemistry to assess neuroinflammatory signaling molecules for validation. In a rat TBI model, GE resulted in weight loss, pathological abnormalities, and cortical hemorrhage. Treatment with curcumin significantly mitigated histological abnormalities and microscopic mitochondrial structural changes in brain tissue. Furthermore, curcumin treatment markedly ameliorated GE-induced brain dysfunction by reducing the levels of several neuroinflammatory signaling molecules, including neuron-specific enolase, interleukin (IL)-1ß, IL-6, and cryptothermic protein 3. Notably, curcumin reshaped the gut microbiome by enhancing evenness, richness, and composition. Prevotella_9, Alloprevotella, Bacilli, Lactobacillales, Proteobacteria, and Gammaproteobacteria were identified as prominent members of the gut microbiota, increasing the linear discriminant analysis scores and specifically enhancing the abundance of bacteria involved in the nuclear factor (NF)-κB signaling pathway, such as Lachnospiraceae and Roseburia. Additionally, there were substantial alterations in serum metabolites associated with metabolic NF-κB signaling pathways in the model group. Curcumin administration reduced serum lipopolysaccharide levels and downregulated downstream Toll-like receptor (TLR)4/myeloid differentiation primary response 88 (MyD88)/NF-κB signaling. Furthermore, curcumin alleviated GE-induced TBI in rats by modulating the gut microbiota and its metabolites. Based on these protective effects, curcumin may exert its influence on the gut microbiota and the TLR4/MyD88/NF-κB signaling pathways to ameliorate GE-induced TBI.


Assuntos
Lesões Encefálicas Traumáticas , Curcumina , Microbioma Gastrointestinal , Ratos , Animais , NF-kappa B/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Lipopolissacarídeos , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Cromatografia Líquida , Explosões , RNA Ribossômico 16S , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia
2.
Lancet Infect Dis ; 24(2): 129-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006892

RESUMO

BACKGROUND: Spread of SARS-CoV-2 led to a global pandemic, and there remains unmet medical needs in the treatment of Omicron infections. VV116, an oral antiviral agent that has potent activity against SARS-CoV-2, was compared with a placebo in this phase 3 study to investigate its efficacy and safety in patients with mild-to-moderate COVID-19. METHODS: This multicentre, double-blind, phase 3, randomised controlled study enrolled adults in hospitals for infectious diseases and tertiary general hospitals in China. Eligible patients were randomly assigned in a 1:1 ratio using permuted block randomisation to receive oral VV116 (0·6 g every 12 h on day 1 and 0·3 g every 12 h on days 2-5) or oral placebo (on the same schedule as VV116) for 5 days. Randomisation stratification factors included SARS-CoV-2 vaccination status and the presence of high-risk factors for progression to severe COVID-19. Inclusion criteria were a positive SARS-CoV-2 test, an initial onset of COVID-19 symptoms 3 days or less before the first study dose, and a score of 2 or more for any target COVID-19-related symptoms in the 24 h before the first dose. Patients who had severe or critical COVID-19 or who had taken any antiviral drugs were excluded from the study. The primary endpoint was the time to clinical symptom resolution for 2 consecutive days. Efficacy analyses were performed on a modified intention-to-treat population, comprising all patients who received at least one dose of VV116 or placebo, tested positive for SARS-CoV-2 nucleic acid, and did not test positive for influenza virus before the first dose. Safety analyses were done on all participants who received at least one dose of VV116 or placebo. This study was registered with ClinicalTrials.gov, NCT05582629, and has been completed. FINDINGS: A total of 1369 patients were randomly assigned to treatment groups and 1347 received either VV116 (n=674) or placebo (n=673). At the interim analysis, VV116 was superior to placebo in reducing the time to sustained clinical symptom resolution among 1229 patients (hazard ratio [HR] 1·21, 95% CI 1·04-1·40; p=0·0023). At the final analysis, a substantial reduction in time to sustained clinical symptom resolution was observed for VV116 compared with placebo among 1296 patients (HR 1·17, 95% CI 1·04-1·33; p=0·0009), consistent with the interim analysis. The incidence of adverse events was similar between groups (242 [35·9%] of 674 patients vs 283 [42·1%] of 673 patients). INTERPRETATION: Among patients with mild-to-moderate COVID-19, VV116 significantly reduced the time to sustained clinical symptom resolution compared with placebo, with no observed safety concerns. FUNDING: Shanghai Vinnerna Biosciences, Shanghai Science and Technology Commission, and the National Key Research and Development Program of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Adenosina , COVID-19 , Adulto , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , China/epidemiologia , Método Duplo-Cego , Adenosina/análogos & derivados
3.
Environ Sci Pollut Res Int ; 29(49): 74619-74631, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35641736

RESUMO

Gas explosion (GE)-induced traumatic brain injury (TBI) can affect thyroid hormone (TH) homeostasis in miners. This study evaluated the effects of hepatic transthyretin and hypothalamic-pituitary-thyroid (HPT) axis on thyroids and explored the protective effect and mechanism of curcumin on GE-induced TBI. Thirty rats were randomly divided into three groups (10 per group): first group (control group)-rats received GE treatment once; second group (GE group)-rats received GE treatment (200 m from the source of the explosion once); third group (GE + Cur group)-rats received curcumin (Cur) by lavage at a dose of 100 mg/kg/day once every other day for 7 days after receiving GE. After GE, the pathological changes were analyzed by hemotoxylin and eosin staining, and the levels of serum reactive oxygen species (ROS), urine iodine (UI), THs, nuclear factor-kappa B (NF-κB), superoxide dismutase (SOD), glutathione peroxidase (Gpx), and malondialdehyde (MDA) were analyzed using ELISA. Expression of proteins in the HPT axis of rats was examined by immunohistochemistry and Western blotting. We found that GE could induce pathologic changes in rat thyroid and liver. Serum levels of THs, NF-κB and serum redox state became unbalanced in rats after GE. GE could inhibit the biosynthesis and biotransformation of THs by affecting key HPT axis proteins. Additionally, GE reduced the level of hepatic transthyretin. Serum THs levels and thyroid sections were almost recovered to normal after curcumin treatment. The aforementioned key HPT axis proteins in the curcumin group showed opposite expression trends. In summary, GE affected THs balance while curcumin can protect against these injury effects by affecting TH biosynthesis, biotransformation, and transport, and inducing oxidative stress and inflammatory responses.


Assuntos
Lesões Encefálicas Traumáticas , Curcumina , Iodo , Animais , Curcumina/farmacologia , Amarelo de Eosina-(YS) , Explosões , Glutationa Peroxidase/metabolismo , Hematoxilina/farmacologia , Masculino , Malondialdeído/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Pré-Albumina/metabolismo , Pré-Albumina/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo
4.
J Med Genet ; 55(3): 143-149, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29301855

RESUMO

Respiratory diseases, which are leading causes of mortality and morbidity in the world, are dysfunctions of the nasopharynx, the trachea, the bronchus, the lung and the pleural cavity. Symptoms of chronic respiratory diseases, such as cough, sneezing and difficulty breathing, may seriously affect the productivity, sleep quality and physical and mental well-being of patients, and patients with acute respiratory diseases may have difficulty breathing, anoxia and even life-threatening respiratory failure. Respiratory diseases are generally heterogeneous, with multifaceted causes including smoking, ageing, air pollution, infection and gene mutations. Clinically, a single pulmonary disease can exhibit more than one phenotype or coexist with multiple organ disorders. To correct abnormal function or repair injured respiratory tissues, one of the most promising techniques is to correct mutated genes by gene editing, as some gene mutations have been clearly demonstrated to be associated with genetic or heterogeneous respiratory diseases. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) systems are three innovative gene editing technologies developed recently. In this short review, we have summarised the structure and operating principles of the ZFNs, TALENs and CRISPR/Cas9 systems and their preclinical and clinical applications in respiratory diseases.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/tendências , Pneumopatias/terapia , Humanos , Pneumopatias/genética , Mutação , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/uso terapêutico , Nucleases de Dedos de Zinco/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA