Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
J Transl Med ; 22(1): 734, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103891

RESUMO

BACKGROUND: Atrial fibrillation (AF) is associated with increased risk of stroke and mortality. It has been reported that the process of atrial fibrosis was regulated by ß-catenin in rats with AF. However, pathophysiological mechanisms of this process in human with AF remain unclear. This study aims to investigate the possible mechanisms of ß-catenin in participating in the atrial fibrosis using human right atrial appendage (hRAA) tissues . METHODS: We compared the difference of ß-catenin expression in hRAA tissues between the patients with AF and sinus rhythm (SR). The possible function of ß-catenin in the development of AF was also explored in mice and primary cells. RESULTS: Firstly, the space between the membrane of the gap junctions of cardiomyocytes was wider in the AF group. Secondly, the expression of the gap junction function related proteins, Connexin40 and Connexin43, was decreased, while the expression of ß-catenin and its binding partner E-cadherin was increased in hRAA and cardiomyocytes of the AF group. Thirdly, ß-catenin colocalized with E-cadherin on the plasma membrane of cardiomyocytes in the SR group, while they were dissociated and accumulated intracellularly in the AF group. Furthermore, the expression of glycogen synthase kinase 3ß (GSK-3ß) and Adenomatous Polyposis Coli (APC), which participated in the degradation of ß-catenin, was decreased in hRAA tissues and cardiomyocytes of the AF group. Finally, the development of atrial fibrosis and AF were proved to be prevented after inhibiting ß-catenin expression in the AF model mice. CONCLUSIONS: Based on human atrial pathological and molecular analyses, our findings provided evidence that ß-catenin was associated with atrial fibrosis and AF progression.


Assuntos
Fibrilação Atrial , Fibrose , Átrios do Coração , Miócitos Cardíacos , beta Catenina , Humanos , Fibrilação Atrial/patologia , Fibrilação Atrial/metabolismo , beta Catenina/metabolismo , Animais , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Glicogênio Sintase Quinase 3 beta/metabolismo , Caderinas/metabolismo , Junções Comunicantes/metabolismo , Pessoa de Meia-Idade , Camundongos , Feminino , Conexina 43/metabolismo , Camundongos Endogâmicos C57BL , Idoso
2.
Front Oncol ; 14: 1351393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114311

RESUMO

Objective: By utilizing machine learning, we can identify genes that are associated with recurrence, invasion, and tumor stemness, thus uncovering new therapeutic targets. Methods: To begin, we obtained a gene set related to recurrence and invasion from the GEO database, a comprehensive gene expression database. We then employed the Weighted Gene Co-expression Network Analysis (WGCNA) to identify core gene modules and perform functional enrichment analysis on them. Next, we utilized the random forest and random survival forest algorithms to calculate the genes within the key modules, resulting in the identification of three crucial genes. Subsequently, one of these key genes was selected for prognosis analysis and potential drug screening using the Kaplan-Meier tool. Finally, in order to examine the role of CDC20 in lung adenocarcinoma (LUAD), we conducted a variety of in vitro and in vivo experiments, including wound healing assay, colony formation assays, Transwell migration assays, flow cytometric cell cycle analysis, western blotting, and a mouse tumor model experiment. Results: First, we collected a total of 279 samples from two datasets, GSE166722 and GSE31210, to identify 91 differentially expressed genes associated with recurrence, invasion, and stemness in lung adenocarcinoma. Functional enrichment analysis revealed that these key gene clusters were primarily involved in microtubule binding, spindle, chromosomal region, organelle fission, and nuclear division. Next, using machine learning, we identified and validated three hub genes (CDC45, CDC20, TPX2), with CDC20 showing the highest correlation with tumor stemness and limited previous research. Furthermore, we found a close association between CDC20 and clinical pathological features, poor overall survival (OS), progression-free interval (PFI), progression-free survival (PFS), and adverse prognosis in lung adenocarcinoma patients. Lastly, our functional research demonstrated that knocking down CDC20 could inhibit cancer cell migration, invasion, proliferation, cell cycle progression, and tumor growth possibly through the MAPK signaling pathway. Conclusion: CDC20 has emerged as a novel biomarker for monitoring treatment response, recurrence, and disease progression in patients with lung adenocarcinoma. Due to its significance, further research studying CDC20 as a potential therapeutic target is warranted. Investigating the role of CDC20 could lead to valuable insights for developing new treatments and improving patient outcomes.

3.
Int J Mol Med ; 54(4)2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39129313

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal pulmonary disease that requires further investigation to understand its pathogenesis. The present study demonstrated that secreted phosphoprotein 1 (SPP1) was aberrantly highly expressed in the lung tissue of patients with IPF and was significantly positively associated with macrophage and T­cell activity. Cell localization studies revealed that SPP1 was primarily overexpressed in macrophages, rather than in T cells. Functionally, knocking down SPP1 expression in vitro inhibited the secretion of fibrosis­related factors and M2 polarization in macrophages. Furthermore, knocking down SPP1 expression inhibited the macrophage­induced epithelial­to­mesenchymal transition in both epithelial and fibroblastic cells. Treatment with SPP1 inhibitors in vivo enhanced lung function and ameliorated pulmonary fibrosis. Mechanistically, SPP1 appears to promote macrophage M2 polarization by regulating the JAK/STAT3 signaling pathway both in vitro and in vivo. In summary, the present study found that SPP1 promotes M2 polarization of macrophages through the JAK2/STAT3 signaling pathway, thereby accelerating the progression of IPF. Inhibition of SPP1 expression in vivo can effectively alleviate the development of IPF, indicating that SPP1 in macrophages may be a potential therapeutic target for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Janus Quinase 2 , Macrófagos , Osteopontina , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , Humanos , Animais , Masculino , Camundongos , Osteopontina/metabolismo , Osteopontina/genética , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
5.
J Neuroimmunol ; 394: 578410, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39067241

RESUMO

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an autoimmune disorder. With the method of indirect immunofluorescence assay (IIF), more anti-NMDAR encephalitis patients have been discovered when its first onset. But it was rare that anti-NMDAR encephalitis overlapped with multiple sclerosis (MS) documented in literatures. Here, we present a case who initially developed anti-NMDAR encephalitis and MS. Furthermore, we concluded the characteristics of patients who were diagnosed as anti-NMDAR encephalitis overlapping with MS. Additionally, due to the relapsing process, mycophenolate mofetil and sequentially fingolimod for the treatment were taken, which subsequently led to the development of a lymphoproliferative disease in his brain and other organs. This case illustrates the complex role of immunosuppressive agents.

6.
ACS Nano ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39047084

RESUMO

Corneal alkali burns represent a prevalent ophthalmic emergency with the potential to induce blindness. The main contributing mechanisms include excessive inflammation and delayed wound healing. Existing clinical therapies have limitations, promoting the exploration of alternative methods that offer improved efficacy and reduced side effects. Adipose-derived stem cell-exosome (ADSC-Exo) has the potential to sustain immune homeostasis and facilitate tissue regeneration. Nevertheless, natural ADSC-Exo lacks disease specificity and exhibits limited bioavailability on the ocular surface. In this study, we conjugated antitumor necrosis factor-α antibodies (aT) to the surface of ADSC-Exo using matrix metalloproteinase-cleavable peptide chains to create engineered aT-Exo with synergistic effects. In both in vivo and in vitro assessments, aT-Exo demonstrated superior efficacy in mitigating corneal injuries compared to aT alone, unmodified exosomes, or aT simply mixed with exosomes. The cleavable conjugation of aT-Exo notably enhanced wound healing and alleviated inflammation more effectively. Simultaneously, we developed poly(vinyl alcohol) microneedles (MNs) for precise and sustained exosome delivery. The in vivo results showcased the superior therapeutic efficiency of MNs compared with conventional topical administration and subconjunctival injection. Therefore, the bioactive nanodrugs-loaded MNs treatment presents a promising strategy for addressing ocular surface diseases.

7.
Nano Lett ; 24(27): 8427-8435, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920280

RESUMO

Metal selenides show outstanding sodium-ion storage performance when matched with an ether-based electrolyte. However, the intrinsic origin of improvement and deterministic interface characteristics have not been systematically elucidated. Herein, employing FeSe2 anode as the model system, the electrochemical kinetics of metal selenides in ether and ester-based electrolytes and associated solid electrolyte interphase (SEI) are investigated in detail. Based on the galvanostatic intermittent titration technique and in situ electrochemical impedance spectroscopy, it is found that the ether-based electrolyte can ensure fast Na+ transfer and low interface impedance. Additionally, the ether-derived thin and smooth double-layer SEI, which is critical in facilitating ion transport, maintaining structural stability, and inhibiting electrolyte overdecomposition, is concretely visualized by transmission electron microscopy, atomic force microscopy, and depth-profiling X-ray photoelectron spectroscopy. This work provides a deep understanding of the optimization mechanism of electrolytes, which can guide available inspiration for the design of practical electrode materials.

8.
Genes (Basel) ; 15(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927603

RESUMO

With the rising cost of animal feed protein, finding affordable and effective substitutes is crucial. Walnut kernel cake, a polyphenol-, fiber-, protein- and fat-rich byproduct of walnut oil extraction, has been underexplored as a potential protein replacement in pig feed. In this study, we found that feeding large Diqing Tibetan pigs walnut kernel cake promoted adipose deposition and improved pork quality during pig growth. Transcriptome analysis revealed the upregulation of genes ANGPTL8, CCNP, ETV4, and TRIB3, associated with adipose deposition. Pathway analysis highlighted enrichment in adipose deposition-related pathways, including PPAR, insulin, PI3K-Akt, Wnt, and MAPK signaling. Further analysis identified DEGs (differentially expressed genes) positively correlated with adipose-related traits, such as PER2 and PTGES. Single-cell transcriptome data pointed to the specific expression of CD248 and PTGES in adipocyte progenitor/stem cells (APSCs), pivotal for adipocyte differentiation and adipose deposition regulation. This study demonstrates walnut kernel cake's potential to substitute soybean cake in pig feed, providing high-quality protein and promoting adipose deposition. It offers insights into feed protein replacement, human functional food, fat metabolism, and related diseases, with marker genes and pathways supporting pig breeding and pork quality improvement.


Assuntos
Ração Animal , Juglans , Transcriptoma , Animais , Juglans/genética , Juglans/metabolismo , Suínos/genética , Ração Animal/análise , Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica/métodos , Adipócitos/metabolismo
9.
Mol Omics ; 20(6): 417-429, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38940931

RESUMO

Objective: this study evaluates the prognostic relevance of gene subtypes and the role of kinesin family member 2C (KIF2C) in lung cancer progression. Methods: high-expression genes linked to overall survival (OS) and progression-free interval (PFI) were selected from the TCGA-LUAD dataset. Consensus clustering analysis categorized lung adenocarcinoma (LUAD) patients into two subtypes, C1 and C2, which were compared using clinical, drug sensitivity, and immunotherapy analyses. A random forest algorithm pinpointed KIF2C as a prognostic hub gene, and its functional impact was assessed through various assays and in vivo experiments. Results: The study identified 163 key genes and distinguished two LUAD subtypes with differing OS, PFI, pathological stages, drug sensitivity, and immunotherapy response. KIF2C, highly expressed in the C2 subtype, was associated with poor prognosis, promoting cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), with knockdown reducing tumor growth in mice. Conclusion: The research delineates distinct LUAD subtypes with significant clinical implications and highlights KIF2C as a potential therapeutic target for personalized treatment in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Transição Epitelial-Mesenquimal , Cinesinas , Neoplasias Pulmonares , Cinesinas/genética , Cinesinas/metabolismo , Humanos , Animais , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Camundongos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Transição Epitelial-Mesenquimal/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Perfilação da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Funct Integr Genomics ; 24(4): 118, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935217

RESUMO

Lung adenocarcinoma (LUAD) has a malignant characteristic that is highly aggressive and prone to metastasis. There is still a lack of suitable biomarkers to facilitate the refinement of precision-based therapeutic regimens. We used a combination of 10 known clustering algorithms and the omics data from 4 dimensions to identify high-resolution molecular subtypes of LUAD. Subsequently, consensus machine learning-related prognostic signature (CMRS) was developed based on subtypes related genes and an integrated program framework containing 10 machine learning algorithms. The efficiency of CMRS was analyzed from the perspectives of tumor microenvironment, genomic landscape, immunotherapy, drug sensitivity, and single-cell analysis. In terms of results, through multi-omics clustering, we identified 2 comprehensive omics subtypes (CSs) in which CS1 patients had worse survival outcomes, higher aggressiveness, mRNAsi and mutation frequency. Subsequently, we developed CMRS based on 13 key genes up-regulated in CS1. The prognostic predictive efficiency of CMRS was superior to most established LUAD prognostic signatures. CMRS demonstrated a strong correlation with tumor microenvironmental feature variants and genomic instability generation. Regarding clinical performance, patients in the high CMRS group were more likely to benefit from immunotherapy, whereas low CMRS were more likely to benefit from chemotherapy and targeted drug therapy. In addition, we evaluated that drugs such as neratinib, oligomycin A, and others may be candidates for patients in the high CMRS group. Single-cell analysis revealed that CMRS-related genes were mainly expressed in epithelial cells. The novel molecular subtypes identified in this study based on multi-omics data could provide new insights into the stratified treatment of LUAD, while the development of CMRS could serve as a candidate indicator of the degree of benefit of precision therapy and immunotherapy for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Imunoterapia , Neoplasias Pulmonares , Aprendizado de Máquina , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genômica , Multiômica
11.
Plant Sci ; 346: 112162, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901780

RESUMO

CrRLK1L subfamily members are involved in diverse growth- and development-related processes in Arabidopsis. However, the functions of their counterparts in rice are unknown. Here, OsANX expression was detected in developing inflorescences, mature pollen grains, and growing pollen tubes, and it was localized to the plasma membrane in pollen grains and tobacco epidermal cells. Homozygous osanx progeny could not be segregated from the CRISPR/Cas9-edited mutants osanx-c1+/- and osanx-c2+/-, and such progeny were segregated only occasionally from osanx-c3+/-. Further, all three alleles showed osanx male but not female gamete transmission defects, in line with premature pollen tube rupture in osanx-c3. Additionally, osanx-c3 exhibited precocious flowering, excessively branched inflorescences, and an extremely low seed setting rate of 1.4 %, while osanx-c2+/- and osanx-c3+/- had no obvious defects in inflorescence development or the seed setting rate compared to wild-type Nipponbare (Nip). Consistent with this, the complemented line pPS1:OsANX-GFP/osanx-c2 (PSC), in which the lack of OsANX expression was inflorescence-specific, showed slightly earlier flowering and overly-branched panicles. Multiple inflorescence meristem transition-related and inflorescence architecture-related genes were expressed at higher levels in osanx-c3 than in Nip; thus, they may partially account for the aforementioned mutant phenotypes. Our findings broaden our understanding of the biological functions of OsANX in rice.


Assuntos
Inflorescência , Oryza , Proteínas de Plantas , Tubo Polínico , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oryza/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/genética , Flores/crescimento & desenvolvimento , Flores/genética , Regulação da Expressão Gênica de Plantas
12.
Acta Biomater ; 181: 202-221, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38692468

RESUMO

Dental pulp is the only soft tissue in the tooth which plays a crucial role in maintaining intrinsic multi-functional behaviors of the dentin-pulp complex. Nevertheless, the restoration of fully functional pulps after pulpitis or pulp necrosis, termed endodontic regeneration, remained a major challenge for decades. Therefore, a bioactive and in-situ injectable biomaterial is highly desired for tissue-engineered pulp regeneration. Herein, a decellularized matrix hydrogel derived from porcine dental pulps (pDDPM-G) was prepared and characterized through systematic comparison against the porcine decellularized nerve matrix hydrogel (pDNM-G). The pDDPM-G not only exhibited superior capabilities in facilitating multi-directional differentiation of dental pulp stem cells (DPSCs) during 3D culture, but also promoted regeneration of pulp-like tissues after DPSCs encapsulation and transplantation. Further comparative proteomic and transcriptome analyses revealed the differential compositions and potential mechanisms that endow the pDDPM-G with highly tissue-specific properties. Finally, it was realized that the abundant tenascin C (TNC) in pDDPM served as key factor responsible for the activation of Notch signaling cascades and promoted DPSCs odontoblastic differentiation. Overall, it is believed that pDDPM-G is a sort of multi-functional and tissue-specific hydrogel-based material that holds great promise in endodontic regeneration and clinical translation. STATEMENT OF SIGNIFICANCE: Functional hydrogel-based biomaterials are highly desirable for endodontic regeneration treatments. Decellularized extracellular matrix (dECM) preserves most extracellular matrix components of its native tissue, exhibiting unique advantages in promoting tissue regeneration and functional restoration. In this study, we prepared a porcine dental pulp-derived dECM hydrogel (pDDPM-G), which exhibited superior performance in promoting odontogenesis, angiogenesis, and neurogenesis of the regenerating pulp-like tissue, further showed its tissue-specificity compared to the peripheral nerve-derived dECM hydrogel. In-depth proteomic and transcriptomic analyses revealed that the activation of tenascin C-Notch axis played an important role in facilitating odontogenic regeneration. This biomaterial-based study validated the great potential of the dental pulp-specific pDDPM-G for clinical applications, and provides a springboard for research strategies in ECM-related regenerative medicine.


Assuntos
Polpa Dentária , Hidrogéis , Regeneração , Células-Tronco , Polpa Dentária/citologia , Animais , Hidrogéis/química , Suínos , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/metabolismo , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Diferenciação Celular/efeitos dos fármacos , Endodontia Regenerativa/métodos , Humanos , Engenharia Tecidual/métodos
13.
Heliyon ; 10(10): e31500, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818190

RESUMO

Objective and rationale: To investigate if the 2-h creatinine clearance (Ccr2) provides a more precise and timely assessment of renal function in critically ill patients compared to the Cockcroft-Gault formula (CrC-G). Materials and methods: This cohort study incorporated 74 patients who were hospitalized for more than 48 h in the Intensive Care Unit over 6 months. A 24-h urine collection protocol was observed, and concurrently, 316 2-h urine specimens were obtained. Then calculated and analyzed the correlation and consistency between Ccr2, CrC-G, and 24-h creatinine clearance (Ccr24) values. The rates of change in Ccr2(ΔCcr2) and CrC-G(ΔCrC-G) were compared over two consecutive samples. Results: The R-values of Ccr2 and Ccr24 in the early, middle and late 24 h were 0.640, 0.886 and 0.854 (P < 0.001), with biases of -2.1, 1.7, and 6.3 ml/min/1.73 m2, respectively. Meanwhile, the R-values for CrC-G and Ccr24 at these time points were 0.618, 0.822, and 0.828(P < 0.001), with biases of -14.0, -5.2, and -1.8 ml/min/1.73 m2, respectively. For patients with Ccr24≥60 ml/min/1.73 m2, the R-value of Ccr2 and Ccr24 during the middle 2 h was 0.852(P < 0.001), while the R-values for CrC-G and Ccr24 were 0.763(P < 0.001), with biases of -2.3 ml/min/1.73 m2 and -14.2 ml/min/1.73 m2 respectively. For the group with Ccr24 ≥ 120 ml/min/1.73 m2 (n = 72), both Ccr2 and Ccr24 displayed a statistically significant elevation compared to CrC-G (P < 0.001), yet no significant difference was observed between Ccr2 and Ccr24 (P = 0.289). Out of 50 patients, 46(92 %) experienced a ΔCcr2≥20 % at least once, compared to 20(40 %) with a ΔCrC-G≥20 %(P < 0.001). 25(50 %) with a ΔCcr2≥50 %, compared to 3(6 %) with a ΔCrC-G≥50 %(P < 0.001). Conclusion: Ccr2 demonstrates a more accurate and more timely indicator of renal function in critically ill patients than CrC-G.

14.
Cell Signal ; 120: 111179, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38640980

RESUMO

S100P, a member of the S100 calcium-binding protein family, is closely associated with abnormal proliferation, invasion, and metastasis of various cancers. However, its role in the lung adenocarcinoma (LUAD) tumor microenvironment (TME) remains unclear. In this study, we observed specific expression of S100P on tumor cells in LUAD patients through tissue immunofluorescence analysis. Furthermore, this expression was strongly correlated with the recruitment and polarization of tumor-associated macrophages (TAMs). Bioinformatics analysis revealed that high S100P expression is associated with poorer overall survival in LUAD patients. Subsequently, a subcutaneous mouse model demonstrated that S100P promotes recruitment and polarization of TAMs towards the M2 type. Finally, in vitro studies on LUAD cells revealed that S100P enhances the secretion of chemokines and polarizing factors by activating the PKA/c-Jun pathway, which is implicated in TAM recruitment and polarization towards the M2 phenotype. Moreover, inhibition of c-Jun expression impedes the ability of TAMs to infiltrate and polarize towards the M2 phenotype. In conclusion, our study demonstrates that S100P facilitates LUAD cells growth by recruiting M2 TAMs through PKA/c-Jun signaling, resulting in the production of various cytokines. Considering these findings, S100P holds promise as an important diagnostic marker and potential therapeutic target for LUAD.


Assuntos
Proteínas de Ligação ao Cálcio , Macrófagos Associados a Tumor , Humanos , Animais , Macrófagos Associados a Tumor/metabolismo , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral , Transdução de Sinais , Feminino , Masculino , Progressão da Doença , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proliferação de Células , Polaridade Celular
15.
J Transl Med ; 22(1): 335, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589907

RESUMO

OBJECTIVE: This study aimed to assess the functions of cell division cycle protein 45 (CDC45) in Non-small cell lung cancer (NSCLC) cancer and its effects on stemness and metastasis. METHODS: Firstly, differentially expressed genes related to lung cancer metastasis and stemness were screened by differential analysis and lasso regression. Then, in vitro, experiments such as colony formation assay, scratch assay, and transwell assay were conducted to evaluate the impact of CDC45 knockdown on the proliferation and migration abilities of lung cancer cells. Western blotting was used to measure the expression levels of related proteins and investigate the regulation of CDC45 on the cell cycle. Finally, in vivo model with subcutaneous injection of lung cancer cells was performed to verify the effect of CDC45 on tumor growth. RESULTS: This study identified CDC45 as a key gene potentially influencing tumor stemness and lymph node metastasis. Knockdown of CDC45 not only suppressed the proliferation and migration abilities of lung cancer cells but also caused cell cycle arrest at the G2/M phase. Further analysis revealed a negative correlation between CDC45 and cell cycle-related proteins, stemness-related markers, and tumor mutations. Mouse experiments confirmed that CDC45 knockdown inhibited tumor growth. CONCLUSION: As a novel regulator of stemness, CDC45 plays a role in regulating lung cancer cell proliferation, migration, and cell cycle. Therefore, CDC45 may serve as a potential target for lung cancer treatment and provide a reference for further mechanistic research and therapeutic development.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/genética , Proliferação de Células/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
16.
Front Oncol ; 14: 1351736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532933

RESUMO

Background: Cervical cancer (CC) is a highly malignant gynecological cancer with a direct causal link to inflammation, primarily resulting from persistent high-risk human papillomavirus (HPV) infection. Given the challenges in early detection and mid to late-stage treatment, our research aims to identify inflammation-associated immune biomarkers in CC. Methods: Using a bioinformatics approach combined with experimental validation, we integrated two CC datasets (GSE39001 and GSE63514) in the Gene Expression Omnibus (GEO) to eliminate batch effects. Immune-related inflammation differentially expressed genes (DGEs) were obtained by R language identification. Results: This analysis identified 37 inflammation-related DEGs. Subsequently, we discussed the different levels of immune infiltration between CC cases and controls. Weighted gene co-expression network analysis (WGCNA) identified seven immune infiltration-related modules in CC. We identified 15 immune DEGs associated with inflammation at the intersection of these findings. In addition, we constructed a protein interaction network using the String database and screened five hub genes using "CytoHubba": CXC chemokine ligand 8 (CXCL8), CXC chemokine ligand 10 (CXCL10), CX3C chemokine receptor 1 (CX3CR1), Fc gamma receptors 3B (FCGR3B), and SELL. The expression of these five genes in CC was determined by PCR experiments. In addition, we assessed their diagnostic value and further analyzed the association of immune cells with them. Conclusions: Five inflammation- and immune-related genes were identified, aiming to provide new directions for early diagnosis and mid to late-stage treatment of CC from multiple perspectives.

17.
J Am Chem Soc ; 146(14): 9819-9827, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38546207

RESUMO

Iron-based phosphate cathode of Na4Fe3(PO4)2(P2O7) has been regarded as a low-cost and structurally stable cathode material for Na-ion batteries (NIBs). However, their practical application is greatly hindered by the insufficient electrochemical performance and limited energy density. Here, we report a new iron-based phosphate cathode of Na4.5Fe3.5(PO4)2.5(P2O7) with the intergrown heterostructure of the maricite-type NaFePO4 and orthorhombic Na4Fe3(PO4)2(P2O7) phases at a mole ratio of 0.5:1. Benefited from the increased composition ratio and the spontaneous activation of the maricite-type NaFePO4 phase, the as-prepared Na4.5Fe3.5(PO4)2.5(P2O7) composites deliver a reversible capacity over 130 mA h g-1 and energy density close to 400 W h kg-1, which is far beyond that of the single-phase Na4Fe3(PO4)2(P2O7) cathode (∼120 mA h g-1 and ∼350 W h kg-1). Moreover, the kg-level products from the scale-up synthesis demonstrate a stable cycling performance over 2000 times at 3 C in pouch cells. We believe that our findings could show the way forward the practical application of the iron-based phosphate cathodes for NIBs.

18.
BMC Med Genomics ; 17(1): 77, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515109

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a crucial role in the tumor microenvironment of lung adenocarcinoma (LUAD) and are often associated with poorer clinical outcomes. This study aimed to screen for CAF-specific genes that could serve as promising therapeutic targets for LUAD. METHODS: We established a single-cell transcriptional profile of LUAD, focusing on genetic changes in fibroblasts. Next, we identified key genes associated with fibroblasts through weighted gene co-expression network analysis (WGCNA) and univariate Cox analysis. Then, we evaluated the relationship between glutathione peroxidase 8 (GPX8) and clinical features in multiple independent LUAD cohorts. Furthermore, we analyzed immune infiltration to shed light on the relationship between GPX8 immune microenvironment remodeling. For clinical treatment, we used the tumor immune dysfunction and exclusion (TIDE) algorithm to assess the immunotherapy prediction efficiency of GPX8. After that, we screened potential therapeutic drugs for LUAD by the connectivity map (cMAP). Finally, we conducted a cell trajectory analysis of GPX8+ CAFs to show their unique function. RESULTS: Fibroblasts were found to be enriched in tumor tissues. Then we identified GPX8 as a key gene associated with CAFs through comprehensive bioinformatics analysis. Further analysis across multiple LUAD cohorts demonstrated the relationship between GPX8 and poor prognosis. Additionally, we found that GPX8 played a role in inducing the formation of an immunosuppressive microenvironment. The TIDE method indicated that patients with low GPX8 expression were more likely to be responsive to immunotherapy. Using the cMAP, we identified beta-CCP as a potential drug-related to GPX8. Finally, cell trajectory analysis provided insights into the dynamic process of GPX8+ CAFs formation. CONCLUSIONS: This study elucidates the association between GPX8+ CAFs and poor prognosis, as well as the induction of immunosuppressive formation in LUAD. These findings suggest that targeting GPX8+ CAFs could potentially serve as a therapeutic strategy for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Fibroblastos , Imunoterapia , Neoplasias Pulmonares/genética , Microambiente Tumoral , Prognóstico , Peroxidases
19.
Heliyon ; 10(2): e24302, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293491

RESUMO

Traditional Chinese medicine volatile oil has a long history and possesses extensive pharmacological activity. However, volatile oils have characteristics such as strong volatility, poor water solubility, low bioavailability, and poor targeting, which limit their application. The use of volatile oil nano drug delivery systems can effectively improve the drawbacks of volatile oils, enhance their bioavailability and chemical stability, and reduce their volatility and toxicity. This article first introduces the limitations of the components of traditional Chinese medicine volatile oils, discusses the main classifications and latest developments of volatile oil nano formulations, and briefly describes the preparation methods of traditional Chinese medicine volatile oil nano formulations. Secondly, the limitations of nano formulation technology are discussed, along with future challenges and prospects. A deeper understanding of the role of nanotechnology in traditional Chinese medicine volatile oils will contribute to the modernization of volatile oils and broaden their application value.

20.
Biomed Pharmacother ; 171: 116138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237352

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease characterized by severe pulmonary fibrosis, for which there is an urgent need for effective therapeutic agents. Mefloquine (Mef) is a quinoline compound primarily used for the treatment of malaria. However, high doses (>25 mg/kg) may lead to side effects such as cardiotoxicity and psychiatric disorders. Here, we found that low-dose Mef (5 mg/kg) can safely and effectively treat IPF mice. Functionally, Mef can improve the pulmonary function of IPF mice (PIF, PEF, EF50, VT, MV, PENH), alleviating pulmonary inflammation and fibrosis by inhibiting macrophage activity. Mechanically, Mef probably regulates the Jak2/Stat3 signaling pathway by binding to the 492HIS site of Potassium voltage-gated channel subfamily H member 2 (KCNH2) protein in macrophages, inhibiting the secretion of macrophage inflammatory and fibrotic factors. In summary, Mef may inhibit macrophage activity by binding to KCNH2 protein, thereby slowing down the progress of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Mefloquina , Humanos , Camundongos , Animais , Mefloquina/uso terapêutico , Macrófagos/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão/patologia , Fibrose , Transdução de Sinais , Bleomicina/farmacologia , Canal de Potássio ERG1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA