Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(1): e52479, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38371126

RESUMO

In this case report, we discuss a patient who experienced spontaneous regression of multiple intracranial meningiomas that were treated conservatively for 5 years after cessation of megestrol acetate, an exogenous progestin. In addition, we discuss the previous literature describing the relationship between exogenous progesterone medications and meningioma growth. This case, along with others reported, implies that cessation of progesterone therapy, when feasible, may alter the natural history of meningioma growth and thus impact treatment decisions.

2.
Cureus ; 15(4): e37885, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37213976

RESUMO

There are a variety of surgical approaches to lesions around the sciatic notch. Historically, peripheral nerve surgeons prefer an infragluteal approach involving a large incision with reflection of the gluteus maximus to better visualize the operative field. This approach was imperative when lesion localization was imprecise. Comparatively, orthopedic surgeons prefer a muscle-splitting, transgluteal approach to operate on the static structures of the posterior hip. The transgluteal approach is significantly less morbid, allowing for same-day discharge and less extensive rehab given preservation of the gluteal muscle. In this article we describe the use of dynamic ultrasound imaging to localize and aid in the resection of three unique tumors around the sciatic notch using a minimally invasive, tissue-sparing, transgluteal technique. We offer a comprehensive description of the benefits, anatomic considerations, and nuances of using a transgluteal approach for the resection of lesions at the sciatic notch.

3.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575827

RESUMO

The paucity of currently available therapies for glioblastoma multiforme requires novel approaches to the treatment of this brain tumour. Disrupting cyclic nucleotide-signalling through phosphodiesterase (PDE) inhibition may be a promising way of suppressing glioblastoma growth. Here, we examined the effects of 28 PDE inhibitors, covering all the major PDE classes, on the proliferation of the human U87MG, A172 and T98G glioblastoma cells. The PDE10A inhibitors PF-2545920, PQ10 and papaverine, the PDE3/4 inhibitor trequinsin and the putative PDE5 inhibitor MY-5445 potently decreased glioblastoma cell proliferation. The synergistic suppression of glioblastoma cell proliferation was achieved by combining PF-2545920 and MY-5445. Furthermore, a co-incubation with drugs that block the activity of the multidrug resistance-associated protein 1 (MRP1) augmented these effects. In particular, a combination comprising the MRP1 inhibitor reversan, PF-2545920 and MY-5445, all at low micromolar concentrations, afforded nearly complete inhibition of glioblastoma cell growth. Thus, the potent suppression of glioblastoma cell viability may be achieved by combining MRP1 inhibitors with PDE inhibitors at a lower toxicity than that of the standard chemotherapeutic agents, thereby providing a new combination therapy for this challenging malignancy.


Assuntos
Antineoplásicos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Sinergismo Farmacológico , Glioblastoma , Humanos , Pirazóis/farmacologia , Quinolinas/farmacologia
4.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34359681

RESUMO

We have used three established human glioblastoma (GBM) cell lines-U87MG, A172, and T98G-as cellular systems to examine the plasticity of the drug-induced GBM cell phenotype, focusing on two clinical drugs, the phosphodiesterase PDE10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib, using genome-wide drug-induced gene expression (DIGEX) to examine the drug response. Both drugs upregulate genes encoding specific growth factors, transcription factors, cellular signaling molecules, and cell surface proteins, while downregulating a broad range of targetable cell cycle and apoptosis-associated genes. A few upregulated genes encode therapeutic targets already addressed by FDA approved drugs, but the majority encode targets for which there are no approved drugs. Amongst the latter, we identify many novel druggable targets that could qualify for chemistry-led drug discovery campaigns. We also observe several highly upregulated transmembrane proteins suitable for combined drug, immunotherapy, and RNA vaccine approaches. DIGEX is a powerful way of visualizing the complex drug response networks emerging during GBM drug treatment, defining a phenotypic landscape which offers many new diagnostic and therapeutic opportunities. Nevertheless, the extreme heterogeneity we observe within drug-treated cells using this technique suggests that effective pan-GBM drug treatment will remain a significant challenge for many years to come.

5.
Drug Discov Today ; 24(5): 1193-1201, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30878561

RESUMO

Glioblastoma (GBM) remains one of the most intransigent of cancers, with a median overall survival of only 15 months after diagnosis. Drug treatments have largely proven ineffective; it is thought that this is related to the heterogeneous nature and plasticity of GBM-initiating stem cell lineages. Although many combination drug therapies are being positioned to address tumour heterogeneity, the most promising therapeutic approaches for GBM to date appear to be those targeting GBM by vaccination or antibody- and cell-based immunotherapy. We review the most recent clinical trials for GBM and discuss the role of adaptive clinical trials in developing personalised treatment strategies to address intra- and inter-tumoral heterogeneity.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Desenvolvimento de Medicamentos , Humanos
6.
J Med Chem ; 61(9): 3870-3888, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29672041

RESUMO

Several trypanosomatid cyclic nucleotide phosphodiesterases (PDEs) possess a unique, parasite-specific cavity near the ligand-binding region that is referred to as the P-pocket. One of these enzymes, Trypanosoma brucei PDE B1 (TbrPDEB1), is considered a drug target for the treatment of African sleeping sickness. Here, we elucidate the molecular determinants of inhibitor binding and reveal that the P-pocket is amenable to directed design. By iterative cycles of design, synthesis, and pharmacological evaluation and by elucidating the structures of inhibitor-bound TbrPDEB1, hPDE4B, and hPDE4D complexes, we have developed 4a,5,8,8a-tetrahydrophthalazinones as the first selective TbrPDEB1 inhibitor series. Two of these, 8 (NPD-008) and 9 (NPD-039), were potent ( Ki = 100 nM) TbrPDEB1 inhibitors with antitrypanosomal effects (IC50 = 5.5 and 6.7 µM, respectively). Treatment of parasites with 8 caused an increase in intracellular cyclic adenosine monophosphate (cAMP) levels and severe disruption of T. brucei cellular organization, chemically validating trypanosomal PDEs as therapeutic targets in trypanosomiasis.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/enzimologia , 3',5'-AMP Cíclico Fosfodiesterases/química , Amidas/química , Amidas/farmacologia , Domínio Catalítico , Concentração Inibidora 50 , Modelos Moleculares , Terapia de Alvo Molecular , Proteínas de Protozoários/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA