Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659027

RESUMO

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Assuntos
Clostridium butyricum , Clostridium , Proteínas Recombinantes , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Clostridium/genética , Clostridium/metabolismo , Humanos , Proteínas Recombinantes/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Administração Oral , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/imunologia , Vacinação , COVID-19/prevenção & controle , Engenharia Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas
2.
Microbiol Spectr ; 11(6): e0245923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37947521

RESUMO

IMPORTANCE: Continued efforts in developing the CRISPR-Cas systems will further enhance our understanding and utilization of Clostridium species. This study demonstrates the development and application of a genome-engineering tool in two Clostridium strains, Clostridium butyricum and Clostridium sporogenes, which have promising potential as probiotics and oncolytic agents. Particular attention was given to the folding of precursor crRNA and the role of this process in off-target DNA cleavage by Cas12a. The results provide the guidelines necessary for efficient genome engineering using this system in clostridia. Our findings not only expand our fundamental understanding of genome-engineering tools in clostridia but also improve this technology to allow use of its full potential in a plethora of biotechnological applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Clostridium/genética , Bactérias Anaeróbias/genética , Genoma Bacteriano
3.
Front Immunol ; 14: 1241632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869009

RESUMO

Despite considerable clinical success, the potential of cancer immunotherapy is restricted by a lack of tumour-targeting strategies. Treatment requires systemic delivery of cytokines or antibodies at high levels to achieve clinically effective doses at malignant sites. This is exacerbated by poor penetration of tumour tissue by therapeutic antibodies. High-grade immune-related adverse events (irAEs) occur in a significant number of patients (5-15%, cancer- and therapeutic-dependent) that can lead to lifelong issues and can exclude from treatment patients with pre-existing autoimmune diseases. Tumour-homing bacteria, genetically engineered to produce therapeutics, is one of the approaches that seeks to mitigate these drawbacks. The ability of Clostridium sporogenes to form spores that are unable to germinate in the presence of oxygen (typical of healthy tissue) offers a unique advantage over other vectors. However, the limited utility of existing gene editing tools hinders the development of therapeutic strains. To overcome the limitations of previous systems, expression of the Cas9 protein and the gRNA was controlled using tetracycline inducible promoters. Furthermore, the components of the system were divided across two plasmids, improving the efficiency of cloning and conjugation. Genome integrated therapeutic genes were assayed biochemically and in cell-based functional assays. The potency of these strains was further improved through rationally-conceived gene knock-outs. The new system was validated by demonstrating the efficient addition and deletion of large sequences from the genome. This included the creation of recombinant strains expressing two pro-inflammatory cytokines, interleukin-2 (IL-2) and granulocyte macrophage-colony stimulating factor (GM-CSF), and a pro-drug converting enzyme (PCE). A comparative, temporal in vitro analysis of the integrant strains and their plasmid-based equivalents revealed a substantial reduction of cytokine activity in chromosome-based constructs. To compensate for this loss, a 7.6 kb operon of proteolytic genes was deleted from the genome. The resultant knock-out strains showed an 8- to 10-fold increase in cytokine activity compared to parental strains.


Assuntos
Edição de Genes , Neoplasias , Humanos , Sistemas CRISPR-Cas , Neoplasias/genética , Citocinas/genética
4.
ACS Synth Biol ; 11(11): 3817-3828, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36265075

RESUMO

Several species from the Clostridium genus show promise as industrial solvent producers and cancer therapeutic delivery vehicles. Previous development of shuttle plasmids and genome editing tools has aided the study of these species and enabled their exploitation in industrial and medical applications. Nevertheless, the precise control of gene expression is still hindered by the limited range of characterized promoters. To address this, libraries of promoters (native and synthetic), 5' UTRs, and alternative start codons were constructed. These constructs were tested in Escherichia coli K-12, Clostridium sporogenes NCIMB 10696, and Clostridium butyricum DSM 10702, using ß-glucuronidase (gusA) as a gene reporter. Promoter activity was corroborated using a second gene reporter, nitroreductase (nmeNTR) from Neisseria meningitides. A strong correlation was observed between the two reporters. In C. sporogenes and C. butyricum, respectively, changes in GusA activity between the weakest and strongest expressing levels were 129-fold and 78-fold. Similar results were obtained with the nmeNTR. Using the GusA reporter, translation initiation from six alternative (non-AUG) start codons was measured in E. coli, C. sporogenes, and C. butyricum. Clearly, species-specific differences between clostridia and E. coli in translation initiation were observed, and the performance of the start codons was influenced by the upstream 5' UTR sequence. These results highlight a new opportunity for gene control in recombinant clostridia. To demonstrate the value of these results, expression of the sacB gene from Bacillus subtilis was optimized for use as a novel negative selection marker in C. butyricum. In summary, these results indicate improvements in the understanding of heterologous gene regulation in Clostridium species and E. coli cloning strains. This new knowledge can be utilized for rationally designed gene regulation in Clostridium-mediated industrial and medical applications, as well as fundamental research into the biology of Clostridium species.


Assuntos
Escherichia coli K12 , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Códon de Iniciação/metabolismo , Escherichia coli K12/genética , Clostridium/genética , Regiões Promotoras Genéticas/genética , Regiões 5' não Traduzidas
5.
Front Microbiol ; 12: 669488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168629

RESUMO

Despite a history dating back to the 1800s, using Clostridium bacteria to treat cancer has not advanced beyond the observation that they can colonise and partially destroy solid tumours. Progress has been hampered by their inability to eradicate the viable portion of tumours, and an instinctive anxiety around injecting patients with a bacterium whose close relatives cause tetanus and botulism. However, recent advances in techniques to genetically engineer Clostridium species gives cause to revisit this concept. This paper illustrates these developments through the attenuation of C. sporogenes to enhance its clinical safety, and through the expression and secretion of an immunotherapeutic. An 8.6 kb sequence, corresponding to a haemolysin operon, was deleted from the genome and replaced with a short non-coding sequence. The resultant phenotype of this strain, named C. sporogenes-NT, showed a reduction of haemolysis to levels similar to the probiotic strain, C. butyricum M588. Comparison to the parental strain showed no change in growth or sporulation. Following injection of tumour-bearing mice with purified spores of the attenuated strain, high levels of germination were detected in all tumours. Very low levels of spores and vegetative cells were detected in the spleen and lymph nodes. The new strain was transformed with four different murine IL-2-expressing plasmids, differentiated by promoter and signal peptide sequences. Biologically active mIL-2, recovered from the extracellular fraction of bacterial cultures, was shown to stimulate proliferation of T cells. With this investigation we propose a new, safer candidate for intratumoral delivery of cancer immunotherapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA