Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36121394

RESUMO

Phagocytosis requires actin dynamics, but whether actomyosin contractility plays a role in this morphodynamic process is unclear. Here, we show that in the retinal pigment epithelium (RPE), particle binding to Mer Tyrosine Kinase (MerTK), a widely expressed phagocytic receptor, stimulates phosphorylation of the Cdc42 GEF Dbl3, triggering activation of MRCKß/myosin-II and its coeffector N-WASP, membrane deformation, and cup formation. Continued MRCKß/myosin-II activity then drives recruitment of a mechanosensing bridge, enabling cytoskeletal force transmission, cup closure, and particle internalization. In vivo, MRCKß is essential for RPE phagocytosis and retinal integrity. MerTK-independent activation of MRCKß signaling by a phosphomimetic Dbl3 mutant rescues phagocytosis in retinitis pigmentosa RPE cells lacking functional MerTK. MRCKß is also required for efficient particle translocation from the cortex into the cell body in Fc receptor-mediated phagocytosis. Thus, conserved MRCKß signaling at the cortex controls spatiotemporal regulation of actomyosin contractility to guide distinct phases of phagocytosis in the RPE and represents the principle phagocytic effector pathway downstream of MerTK.


Assuntos
Actomiosina , Miotonina Proteína Quinase , Fagocitose , Actinas/metabolismo , Actomiosina/metabolismo , Miosina Tipo II/metabolismo , Miotonina Proteína Quinase/metabolismo , Fagocitose/fisiologia , Proteínas Tirosina Quinases , Receptores Fc , c-Mer Tirosina Quinase/metabolismo
2.
Stem Cell Reports ; 17(4): 775-788, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334217

RESUMO

The generation of retinal organoids from human pluripotent stem cells (hPSC) is now a well-established process that in part recapitulates retinal development. However, hPSC-derived photoreceptors that exhibit well-organized outer segment structures have yet to be observed. To facilitate improved inherited retinal disease modeling, we determined conditions that would support outer segment development in maturing hPSC-derived photoreceptors. We established that the use of antioxidants and BSA-bound fatty acids promotes the formation of membranous outer segment-like structures. Using new protocols for hPSC-derived retinal organoid culture, we demonstrated improved outer segment formation for both rod and cone photoreceptors, including organized stacked discs. Using these enhanced conditions to generate iPSC-derived retinal organoids from patients with X-linked retinitis pigmentosa, we established robust cellular phenotypes that could be ameliorated following adeno-associated viral vector-mediated gene augmentation. These findings should aid both disease modeling and the development of therapeutic approaches for the treatment of photoreceptor disorders.


Assuntos
Organoides , Células-Tronco Pluripotentes , Antioxidantes/farmacologia , Suplementos Nutricionais , Humanos , Lipídeos , Retina , Células Fotorreceptoras Retinianas Cones
3.
Cell Rep ; 35(3): 109022, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882303

RESUMO

Age-related macular degeneration and other macular diseases result in the loss of light-sensing cone photoreceptors, causing irreversible sight impairment. Photoreceptor replacement may restore vision by transplanting healthy cells, which must form new synaptic connections with the recipient retina. Despite recent advances, convincing evidence of functional connectivity arising from transplanted human cone photoreceptors in advanced retinal degeneration is lacking. Here, we show restoration of visual function after transplantation of purified human pluripotent stem cell-derived cones into a mouse model of advanced degeneration. Transplanted human cones elaborate nascent outer segments and make putative synapses with recipient murine bipolar cells (BCs), which themselves undergo significant remodeling. Electrophysiological and behavioral assessments demonstrate restoration of surprisingly complex light-evoked retinal ganglion cell responses and improved light-evoked behaviors in treated animals. Stringent controls exclude alternative explanations, including material transfer and neuroprotection. These data provide crucial validation for photoreceptor replacement therapy and for the potential to rescue cone-mediated vision.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/terapia , Organoides/transplante , Recuperação de Função Fisiológica/fisiologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Transgênicos , Micotoxinas/genética , Micotoxinas/metabolismo , Organoides/citologia , Organoides/metabolismo , Periferinas/genética , Periferinas/metabolismo , Estimulação Luminosa , Cultura Primária de Células , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Sinapses/metabolismo , Transplante Heterólogo , Visão Ocular/fisiologia
4.
Mol Pharm ; 17(7): 2390-2397, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32437164

RESUMO

Opticin is an endogenous vitreous glycoprotein that may have therapeutic potential as it has been shown that supranormal concentrations suppress preretinal neovascularization. Herein we investigated the pharmacokinetics of opticin following intravitreal injection in rabbits. To measure simultaneously concentrations of human and rabbit opticin, a selected reaction monitoring mass spectrometry assay was developed. The mean concentration of endogenous rabbit opticin in 7 uninjected eyes was measured and found to be 19.2 nM or 0.62 µg/mL. When the vitreous was separated by centrifugation into a supernatant and collagen-containing pellet, 94% of the rabbit opticin was in the supernatant. Intravitreal injection of human opticin (40 µg) into both eyes of rabbits was followed by enucleation at 5, 24, and 72 h and 7, 14, and 28 days postinjection (n = 6 at each time point) and measurement of vitreous human and rabbit opticin concentrations in the supernatant and collagen-containing pellet following centrifugation. The volume of distribution of human opticin was calculated to be 3.31 mL, and the vitreous half-life was 4.2 days. Assuming that rabbit and human opticin are cleared from rabbit vitreous at the same rate, opticin is secreted into the vitreous at a rate of 0.14 µg/day. We conclude that intravitreally injected opticin has a vitreous half-life that is similar to currently available antiangiogenic therapeutics. While opticin was first identified bound to vitreous collagen fibrils, here we demonstrate that >90% of endogenous opticin is not bound to collagen. Endogenous opticin is secreted by the nonpigmented ciliary epithelium into the rabbit vitreous at a remarkably high rate, and the turnover in vitreous is approximately 15% per day.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Proteínas da Matriz Extracelular/administração & dosagem , Proteínas da Matriz Extracelular/farmacocinética , Injeções Intravítreas/métodos , Proteoglicanas/administração & dosagem , Proteoglicanas/farmacocinética , Inibidores da Angiogênese/biossíntese , Animais , Colágeno/metabolismo , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/metabolismo , Meia-Vida , Humanos , Masculino , Espectrometria de Massas/métodos , Neovascularização Fisiológica/efeitos dos fármacos , Proteoglicanas/biossíntese , Proteoglicanas/metabolismo , Coelhos , Retina/metabolismo , Corpo Vítreo/metabolismo
5.
JAMA Ophthalmol ; 138(7): 725-730, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379288

RESUMO

Importance: The value of facedown positioning following surgery for large full-thickness macular holes is unknown. Objective: To determine whether advice to position facedown postoperatively improves the outcome for large macular holes. Design, Setting, and Participants: This randomized, parallel group superiority trial with 1:1 randomization stratified by site with 3 months' follow-up was conducted at 9 sites across the United Kingdom and included participants with an idiopathic full-thickness macular hole of at least 400 µm minimum linear diameter and a duration of fewer than 12 months. All participants had vitrectomy surgery with peeling of the internal limiting membrane and injection of perfluoropropane (14%) gas, with or without simultaneous surgery for cataract. Interventions: Following surgery, participants were randomly advised to position either facedown or face forward for 8 hours daily for 5 days. Main Outcomes and Measures: The primary outcome was closure of the macular hole determined 3 months following surgery by masked optical coherence tomography evaluation. Secondary outcome measures at 3 months were visual acuity, participant-reported experience of positioning, and quality of life measured by the National Eye Institute Visual Function Questionnaire 25. Results: A total of 185 participants (45 men [24.3%]; 156 white [84.3%]; 9 black [4.9%]; 10 Asian [5.4%]; median age, 69 years [interquartile range, 64-73 years]) were randomized. Macular hole closure was observed in 90 (85.6%) who were advised to position face forward and 88 (95.5%) advised to position facedown (adjusted odds ratio, 3.15; 95% CI, 0.87-11.41; P = .08). The mean (SD) improvement in best-corrected visual acuity at 3 months was 0.34 (0.69) logMAR (equivalent to 1 Snellen line) in the face-forward group and 0.57 (0.42) logMAR (equivalent to 3 Snellen lines) in the facedown group (adjusted mean difference, 0.22 [95 % CI, 0.05-0.38]; equivalent to 2 Snellen lines); 95% CI, 0.05-0.38; P = .01). The median National Eye Institute Visual Function Questionnaire 25 score was 89 (interquartile range, 76-94) in the facedown group and 87 (interquartile range, 73-93) in the face-forward group (mean [SD] change on a logistic scale, 0.08 [0.26] face forward and 0.11 [0.25] facedown; adjusted mean [SD] difference on a logistic scale, 0.02; 95% CI, -0.03 to 0.07; P = .41). Conclusions and Relevance: The results do not prove that facedown positioning following surgery is more likely to close large macular holes compared with facing forward but do support the possibility that visual acuity outcomes may be superior. Trial Registration: Isrctn.org Identifier: 12410596.


Assuntos
Macula Lutea/patologia , Cuidados Pós-Operatórios/métodos , Decúbito Ventral , Qualidade de Vida , Perfurações Retinianas/cirurgia , Acuidade Visual , Vitrectomia/métodos , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perfurações Retinianas/diagnóstico , Tomografia de Coerência Óptica , Resultado do Tratamento
6.
Angiogenesis ; 23(2): 83-90, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31583505

RESUMO

The retinal vasculature is tightly organized in a structure that provides for the high metabolic demand of neurons while minimizing interference with incident light. The adverse impact of retinal vascular insufficiency is mitigated by adaptive vascular regeneration but exacerbated by pathological neovascularization. Aberrant growth of neovessels in the retina is responsible for impairment of sight in common blinding disorders including retinopathy of prematurity, proliferative diabetic retinopathy, and age-related macular degeneration. Myeloid cells are key players in this process, with diverse roles that can either promote or protect against ocular neovascularization. We have previously demonstrated that myeloid-derived VEGF, HIF1, and HIF2 are not essential for pathological retinal neovascularization. Here, however, we show by cell-specific depletion of Vhl in a mouse model of retinal ischemia (oxygen-induced retinopathy, OIR) that myeloid-derived HIFs promote VEGF and bFGF expression and enhance vascular regeneration in association with improved density and organization of the astrocytic network.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Isquemia/genética , Células Mieloides/metabolismo , Regeneração/genética , Vasos Retinianos/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/genética , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Transgênicos , Retina/patologia , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
7.
Invest Ophthalmol Vis Sci ; 59(8): 3330-3339, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30025081

RESUMO

Purpose: RPE65-associated Leber congenital amaurosis (RPE65-LCA) is an early-onset severe retinal dystrophy associated with progressive visual field loss. Phase I/II and III gene therapy trials have identified improved retinal sensitivity but little is known about the natural history of retinal sensitivity in RPE65-LCA. Methods: A total of 19 subjects (aged 9 to 23 years) undertook monocular full-field static perimetry of which 13 subjects were monitored longitudinally. Retinal sensitivity was measured as mean sensitivity (MS) and volumetrically quantified (in decibel-steradian) using visual field modeling and analysis software for the total (VTOT), central 30° (V30) and central 15° (V15) visual field. Correlation was evaluated between retinal sensitivity and age, best-corrected visual acuity (BCVA), contrast sensitivity, vision-related quality of life, and genotype. Test-retest reliability was also investigated. Results: V30 was identified to have a strong, weak, and moderate correlation with age, BCVA and contrast sensitivity respectively. Furthermore, V30 was identified as having a weak linear relationship with the mobility and independence domains of the vision-related quality of life questionnaire. Longitudinal analysis demonstrated a slow loss of retinal sensitivity in this cohort. Subjects with at least one RPE65 nonsense variant appeared to show greater progressive loss of retinal sensitivity in the second decade of life than those without. Conclusions: Volumetric assessment of central 30° visual field sensitivity, V30, is a useful independent measure of retinal function and, in our data, represented the best metric to monitor deterioration of retinal sensitivity in RPE65-LCA. Furthermore, functional correlation with genotype may enable more informed prognostic counseling. (ClinicalTrials.gov number, NCT02714816.)


Assuntos
Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Retina/fisiopatologia , Campos Visuais/fisiologia , cis-trans-Isomerases/genética , Adolescente , Criança , Sensibilidades de Contraste/fisiologia , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Qualidade de Vida , Inquéritos e Questionários , Acuidade Visual/fisiologia , Testes de Campo Visual , Adulto Jovem
8.
Ophthalmology ; 125(11): 1765-1775, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29884405

RESUMO

PURPOSE: Transplantation of human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells offers the potential for benefit in macular degeneration. Previous trials have reported improved visual acuity (VA), but lacked detailed analysis of retinal structure and function in the treated area. DESIGN: Phase 1/2 open-label dose-escalation trial to evaluate safety and potential efficacy (clinicaltrials.gov identifier, NCT01469832). PARTICIPANTS: Twelve participants with advanced Stargardt disease (STGD1), the most common cause of macular degeneration in children and young adults. METHODS: Subretinal transplantation of up to 200 000 hESC-derived RPE cells with systemic immunosuppressive therapy for 13 weeks. MAIN OUTCOME MEASURES: The primary end points were the safety and tolerability of hESC-derived RPE cell administration. We also investigated evidence of the survival of transplanted cells and measured retinal structure and function using microperimetry and spectral-domain OCT. RESULTS: Focal areas of subretinal hyperpigmentation developed in all participants in a dose-dependent manner in the recipient retina and persisted after withdrawal of systemic immunosuppression. We found no evidence of uncontrolled proliferation or inflammatory responses. Borderline improvements in best-corrected VA in 4 participants either were unsustained or were matched by a similar improvement in the untreated contralateral eye. Microperimetry demonstrated no evidence of benefit at 12 months in the 12 participants. In one instance at the highest dose, localized retinal thinning and reduced sensitivity in the area of hyperpigmentation suggested the potential for harm. Participant-reported quality of life using the 25-item National Eye Institute Visual Function Questionnaire indicated no significant change. CONCLUSIONS: Subretinal hyperpigmentation is consistent with the survival of viable transplanted hESC-derived RPE cells, but may reflect released pigment in their absence. The findings demonstrate the value of detailed analysis of spatial correlation of retinal structure and function in determining with appropriate sensitivity the impact of cell transplantation and suggest that intervention in early stage of disease should be approached with caution. Given the slow rate of progressive degeneration at this advanced stage of disease, any protection against further deterioration may be evident only after a more extended period of observation.


Assuntos
Células-Tronco Embrionárias Humanas/transplante , Degeneração Macular/congênito , Epitélio Pigmentado da Retina/transplante , Adulto , Eletrorretinografia , Feminino , Angiofluoresceinografia , Humanos , Imunossupressores/uso terapêutico , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/fisiopatologia , Degeneração Macular/terapia , Masculino , Pessoa de Meia-Idade , Células Fotorreceptoras de Vertebrados/fisiologia , Qualidade de Vida , Perfil de Impacto da Doença , Microscopia com Lâmpada de Fenda , Doença de Stargardt , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Testes de Campo Visual , Campos Visuais/fisiologia
9.
Development ; 145(8)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29615467

RESUMO

In the adult central nervous system, endothelial and neuronal cells engage in tight cross-talk as key components of the so-called neurovascular unit. Impairment of this important relationship adversely affects tissue homeostasis, as observed in neurodegenerative conditions including Alzheimer's and Parkinson's disease. In development, the influence of neuroprogenitor cells on angiogenesis is poorly understood. Here, we show in mouse that these cells interact intimately with the growing retinal vascular network, and we identify a novel regulatory mechanism of vasculature development mediated by hypoxia-inducible factor 2a (Hif2a). By Cre-lox gene excision, we show that Hif2a in retinal neuroprogenitor cells upregulates the expression of the pro-angiogenic mediators vascular endothelial growth factor and erythropoietin, whereas it locally downregulates the angiogenesis inhibitor endostatin. Importantly, absence of Hif2a in retinal neuroprogenitor cells causes a marked reduction of proliferating endothelial cells at the angiogenic front. This results in delayed retinal vascular development, fewer major retinal vessels and reduced density of the peripheral deep retinal vascular plexus. Our findings demonstrate that retinal neuroprogenitor cells are a crucial component of the developing neurovascular unit.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/inervação , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Endostatinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Epitélio Pigmentado da Retina/crescimento & desenvolvimento , Epitélio Pigmentado da Retina/metabolismo , Vasos Retinianos/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Br Med Bull ; 126(1): 13-25, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506236

RESUMO

Introduction: Inherited retinal diseases are the leading cause of sight impairment in people of working age in England and Wales, and the second commonest in childhood. Gene therapy offers the potential for benefit. Sources of data: Pubmed and clinicaltrials.gov. Areas of agreement: Gene therapy can improve vision in RPE65-associated Leber Congenital Amaurosis (RPE65-LCA). Potential benefit depends on efficient gene transfer and is limited by the extent of retinal degeneration. Areas of controversy: The magnitude of vision improvement from RPE65-LCA gene therapy is suboptimal, and its durability may be limited by progressive retinal degeneration. Growing points: The safety and potential benefit of gene therapy for inherited and acquired retinal diseases is being explored in a rapidly expanding number of trials. Areas timely for developing research: Developments in vector design and delivery will enable greater efficiency and safety of gene transfer. Optimization of trial design will accelerate reliable assessment of outcomes.


Assuntos
Terapia Genética/métodos , Amaurose Congênita de Leber/terapia , Degeneração Retiniana/genética , Ensaios Clínicos como Assunto , Medicina Baseada em Evidências , Técnicas de Transferência de Genes , Terapia Genética/tendências , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/fisiopatologia , Degeneração Retiniana/fisiopatologia
11.
Stem Cell Reports ; 10(2): 406-421, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29307580

RESUMO

Human vision relies heavily upon cone photoreceptors, and their loss results in permanent visual impairment. Transplantation of healthy photoreceptors can restore visual function in models of inherited blindness, a process previously understood to arise by donor cell integration within the host retina. However, we and others recently demonstrated that donor rod photoreceptors engage in material transfer with host photoreceptors, leading to the host cells acquiring proteins otherwise expressed only by donor cells. We sought to determine whether stem cell- and donor-derived cones undergo integration and/or material transfer. We find that material transfer accounts for a significant proportion of rescued cells following cone transplantation into non-degenerative hosts. Strikingly, however, substantial numbers of cones integrated into the Nrl-/- and Prph2rd2/rd2, but not Nrl-/-;RPE65R91W/R91W, murine models of retinal degeneration. This confirms the occurrence of photoreceptor integration in certain models of retinal degeneration and demonstrates the importance of the host environment in determining transplantation outcome.


Assuntos
Cegueira/terapia , Células Fotorreceptoras Retinianas Cones/transplante , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Cegueira/genética , Cegueira/patologia , Diferenciação Celular/genética , Modelos Animais de Doenças , Proteínas do Olho/genética , Humanos , Camundongos , Periferinas/genética , Retina/patologia , Retina/transplante , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/patologia , Células-Tronco/citologia , cis-trans-Isomerases/genética
12.
Invest Ophthalmol Vis Sci ; 59(1): 85-93, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29332120

RESUMO

Purpose: RPE65-associated Leber congenital amaurosis (RPE65-LCA) is a progressive severe retinal dystrophy with early profound dysfunction of rod photoreceptors followed by progressive cone photoreceptor degeneration. We aim to provide detailed information about how cone dysfunction affects color discrimination. Methods: Seven adults (aged 16-21) with RPE65-LCA underwent monocular color discrimination assessment using the Trivector and Ellipse versions of three computerized tests: Cambridge Colour Test (CCT), low vision version of the Cambridge Colour Test (lvvCCT), and the Universal Colour Discrimination Test (UCDT). For comparison, subjects were also tested using the American Optical Hardy Rand Rittler (AO-HRR) plates. Each assessment was repeated three times. Results: The Trivector version of the tests demonstrated that color discrimination along the tritan axis was undetectable in four subjects, and severely reduced in three subjects. These findings were confirmed by the Ellipse version of the tests. Color discrimination along the protan and deutan axes was evident but reduced in six of seven subjects. Four of seven subjects were unable to read any of the HRR plates. Conclusions: The computerized color vision tests adopted in this study provide detailed information about color discrimination in adult RPE65-LCA patients. The condition is associated with severe impairment of color discrimination, particularly along the tritan axis indicating possible early involvement of S-cones, with additional protan and deutan loss to a lesser extent. This psychophysical assessment strategy is likely to be valuable in measuring the impact of therapeutic intervention on cone function.


Assuntos
Percepção de Cores/fisiologia , Amaurose Congênita de Leber/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , cis-trans-Isomerases/genética , Adolescente , Testes de Percepção de Cores , Feminino , Variação Genética , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/metabolismo , Masculino , Adulto Jovem , cis-trans-Isomerases/metabolismo
13.
Stem Cells ; 36(5): 709-722, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29327488

RESUMO

Loss of photoreceptor cells due to retinal degeneration is one of the main causes of blindness in the developed world. Although there is currently no effective treatment, cell replacement therapy using stem-cell-derived photoreceptor cells may be a feasible future treatment option. In order to ensure safety and efficacy of this approach, robust cell isolation and purification protocols must be developed. To this end, we previously developed a biomarker panel for the isolation of mouse photoreceptor precursors from the developing mouse retina and mouse embryonic stem cell cultures. In the current study we applied this approach to the human pluripotent stem cell (hPSC) system, and identified novel biomarker combinations that can be leveraged for the isolation of human photoreceptors. Human retinal samples and hPSC-derived retinal organoid cultures were screened against 242 human monoclonal antibodies using a high through-put flow cytometry approach. We identified 46 biomarkers with significant expression levels in the human retina and hPSC differentiation cultures. Human retinal cell samples, either from fetal tissue or derived from embryonic and induced pluripotent stem cell cultures, were fluorescence-activated cell sorted (FACS) using selected candidate biomarkers that showed expression in discrete cell populations. Enrichment for photoreceptors and exclusion of mitotically active cells was demonstrated by immunocytochemical analysis with photoreceptor-specific antibodies and Ki-67. We established a biomarker combination, which enables the robust purification of viable human photoreceptors from both human retinae and hPSC-derived organoid cultures. Stem Cells 2018;36:709-722.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/citologia , Células Fotorreceptoras/citologia , Degeneração Retiniana/terapia , Animais , Biomarcadores/análise , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células Fotorreceptoras de Vertebrados/citologia , Células-Tronco Pluripotentes/citologia , Transplante de Células-Tronco/métodos
14.
Stem Cell Reports ; 9(3): 820-837, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28844659

RESUMO

Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration.


Assuntos
Células-Tronco Pluripotentes/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/transplante , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/ultraestrutura , Humanos , Células-Tronco Pluripotentes/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia , Fatores de Tempo
15.
PLoS One ; 12(6): e0179759, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28650964

RESUMO

Retinal ischemia and pathological angiogenesis cause severe impairment of sight. Oxygen-induced retinopathy (OIR) in young mice is widely used as a model to investigate the underlying pathological mechanisms and develop therapeutic interventions. We compared directly the conventional OIR model (exposure to 75% O2 from postnatal day (P) 7 to P12) with an alternative, accelerated version (85% O2 from P8 to P11). We found that accelerated OIR induces similar pre-retinal neovascularization but greater retinal vascular regression that recovers more rapidly. The extent of retinal gliosis is similar but neuroretinal function, as measured by electroretinography, is better maintained in the accelerated model. We found no systemic or maternal morbidity in either model. Accelerated OIR offers a safe, reliable and more rapid alternative model in which pre-retinal neovascularization is similar but retinal vascular regression is greater.


Assuntos
Neovascularização Retiniana/etiologia , Animais , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Hiperóxia/complicações , Isquemia/complicações , Isquemia/patologia , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Doenças Retinianas/fisiopatologia , Neovascularização Retiniana/patologia , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/patologia , Vasos Retinianos/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/genética
16.
Neurobiol Aging ; 36(9): 2637-48, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26234657

RESUMO

Dysregulation of the complement system has been implicated in the pathogenesis of age-related macular degeneration. To investigate consequences of altered complement regulation in the eye with age, we examined Cd59a complement regulator deficient (Cd59a(-/-)) mice between 4 and 15 months. In vivo imaging revealed an increased age-related accumulation of autofluorescent spots in Cd59a(-/-) mice, a feature that reflects accumulation of subretinal macrophages and/or microglia. Despite this activation of myeloid cells in the eye, Cd59a(-/-) mice showed normal retinal histology and function as well as normal choroidal microvasculature. With age, they revealed increased expression of activators of the alternative complement pathway (C3, Cfb, Cfd), in particular in the retinal pigment epithelium (RPE)-choroid but less in the retina. This molecular response was not altered by moderately-enhanced light exposure. Cd59a deficiency therefore leads to a preferential age-related dysregulation of the complement system in the RPE-choroid, that alone or in combination with light as a trigger, is not sufficient to cause choroidal vascular changes or retinal degeneration and dysfunction. This data emphasizes the particular vulnerability of the RPE-choroidal complex to dysregulation of the alternative complement pathway during aging.


Assuntos
Envelhecimento/genética , Antígenos CD59/metabolismo , Corioide/metabolismo , Fatores Imunológicos/metabolismo , Degeneração Macular , Epitélio Pigmentado da Retina/metabolismo , Análise de Variância , Animais , Antígenos CD59/genética , Corioide/patologia , Ativação do Complemento , Modelos Animais de Doenças , Eletrorretinografia , Regulação da Expressão Gênica/genética , Macrófagos/metabolismo , Macrófagos/patologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/patologia
17.
N Engl J Med ; 372(20): 1887-97, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25938638

RESUMO

BACKGROUND: Mutations in RPE65 cause Leber's congenital amaurosis, a progressive retinal degenerative disease that severely impairs sight in children. Gene therapy can result in modest improvements in night vision, but knowledge of its efficacy in humans is limited. METHODS: We performed a phase 1-2 open-label trial involving 12 participants to evaluate the safety and efficacy of gene therapy with a recombinant adeno-associated virus 2/2 (rAAV2/2) vector carrying the RPE65 complementary DNA, and measured visual function over the course of 3 years. Four participants were administered a lower dose of the vector, and 8 were administered a higher dose. In a parallel study in dogs, we investigated the relationship among vector dose, visual function, and electroretinography (ERG) findings. RESULTS: Improvements in retinal sensitivity were evident, to varying extents, in six participants for up to 3 years, peaking at 6 to 12 months after treatment and then declining. No associated improvement in retinal function was detected by means of ERG. Three participants had intraocular inflammation, and two had clinically significant deterioration of visual acuity. The reduction in central retinal thickness varied among participants. In dogs, RPE65 gene therapy with the same vector at lower doses improved vision-guided behavior, but only higher doses resulted in improvements in retinal function that were detectable with the use of ERG. CONCLUSIONS: Gene therapy with rAAV2/2 RPE65 vector improved retinal sensitivity, albeit modestly and temporarily. Comparison with the results obtained in the dog model indicates that there is a species difference in the amount of RPE65 required to drive the visual cycle and that the demand for RPE65 in affected persons was not met to the extent required for a durable, robust effect. (Funded by the National Institute for Health Research and others; ClinicalTrials.gov number, NCT00643747.).


Assuntos
DNA Complementar/administração & dosagem , Terapia Genética , Vetores Genéticos/administração & dosagem , Amaurose Congênita de Leber/terapia , Retina/fisiologia , cis-trans-Isomerases/genética , Adolescente , Animais , Criança , Dependovirus , Modelos Animais de Doenças , Progressão da Doença , Cães , Humanos , Amaurose Congênita de Leber/genética , Mutação , Células Fotorreceptoras de Vertebrados , Visão Ocular , Adulto Jovem
18.
Stem Cells ; 33(8): 2469-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25982268

RESUMO

Loss of photoreceptors due to retinal degeneration is a major cause of untreatable blindness. Cell replacement therapy, using pluripotent stem cell-derived photoreceptor cells, may be a feasible future treatment. Achieving safe and effective cell replacement is critically dependent on the stringent selection and purification of optimal cells for transplantation. Previously, we demonstrated effective transplantation of post-mitotic photoreceptor precursor cells labelled by fluorescent reporter genes. As genetically labelled cells are not desirable for therapy, here we developed a surface biomarker cell selection strategy for application to complex pluripotent stem cell differentiation cultures. We show that a five cell surface biomarker panel CD73(+)CD24(+)CD133(+)CD47(+)CD15(-) facilitates the isolation of photoreceptor precursors from three-dimensional self-forming retina differentiated from mouse embryonic stem cells. Importantly, stem cell-derived cells isolated using the biomarker panel successfully integrate and mature into new rod photoreceptors in the adult mouse retinae after subretinal transplantation. Conversely, unsorted or negatively selected cells do not give rise to newly integrated rods after transplantation. The biomarker panel also removes detrimental proliferating cells prior to transplantation. Notably, we demonstrate how expression of the biomarker panel is conserved in the human retina and propose that a similar selection strategy will facilitate isolation of human transplantation-competent cells for therapeutic application.


Assuntos
Antígenos de Diferenciação/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Degeneração Retiniana/terapia , Células Fotorreceptoras Retinianas Bastonetes , Transplante de Células-Tronco , Animais , Humanos , Camundongos , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/transplante
19.
Nat Commun ; 6: 6006, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613321

RESUMO

The rd1 mouse with a mutation in the Pde6b gene was the first strain of mice identified with a retinal degeneration. However, AAV-mediated gene supplementation of rd1 mice only results in structural preservation of photoreceptors, and restoration of the photoreceptor-mediated a-wave, but not in restoration of the bipolar cell-mediated b-wave. Here we show that a mutation in Gpr179 prevents the full restoration of vision in rd1 mice. Backcrossing rd1 with C57BL6 mice reveals the complete lack of b-wave in a subset of mice, consistent with an autosomal recessive Mendelian inheritance pattern. We identify a mutation in the Gpr179 gene, which encodes for a G-protein coupled receptor localized to the dendrites of ON-bipolar cells. Gene replacement in rd1 mice that are devoid of the mutation in Gpr179 successfully restores the function of both photoreceptors and bipolar cells, which is maintained for up to 13 months. Our discovery may explain the failure of previous gene therapy attempts in rd1 mice, and we propose that Grp179 mutation status should be taken into account in future studies involving rd1 mice.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Terapia Genética/métodos , Receptores Acoplados a Proteínas G/genética , Degeneração Retiniana/genética , Animais , Cruzamentos Genéticos , Dependovirus , Eletrorretinografia/métodos , Medo , Feminino , Fundo de Olho , Genótipo , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Genéticos , Mutação , Plasmídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Degeneração Retiniana/metabolismo , Fatores de Tempo , Tomografia de Coerência Óptica
20.
Hum Gene Ther ; 24(10): 883-93, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24028205

RESUMO

Young Rpe65-deficient dogs have been used as a model for human RPE65 Leber congenital amaurosis (RPE65-LCA) in proof-of-concept trials of recombinant adeno-associated virus (rAAV) gene therapy. However, there are relatively few reports of the outcome of rAAV gene therapy in Rpe65-deficient dogs older than 2 years of age. The purpose of this study was to investigate the success of this therapy in older Rpe65-deficient dogs. Thirteen eyes were treated in dogs between 2 and 6 years old. An rAAV2 vector expressing the human RPE65 cDNA driven by the human RPE65 promoter was delivered by subretinal injection. Twelve of the 13 eyes had improved retinal function as assessed by electroretinography, and all showed improvement in vision at low lighting intensities. Histologic examination of five of the eyes was performed but found no correlation between electroretinogram (ERG) rescue and numbers of remaining photoreceptors. We conclude that functional rescue is still possible in older dogs and that the use of older Rpe65-deficient dogs, rather than young Rpe65-deficient dogs that have very little loss of photoreceptors, more accurately models the situation when treating human RPE65-LCA patients.


Assuntos
Dependovirus/genética , Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , cis-trans-Isomerases/genética , Fatores Etários , Animais , Modelos Animais de Doenças , Cães , Eletrorretinografia , Angiofluoresceinografia , Vetores Genéticos/administração & dosagem , Humanos , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia , Resultado do Tratamento , Testes Visuais , cis-trans-Isomerases/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA