Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Psychiatry ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052982

RESUMO

Maternal educational attainment (MEA) shapes offspring health through multiple potential pathways. Differential DNA methylation may provide a mechanistic understanding of these long-term associations. We aimed to quantify the associations of MEA with offspring DNA methylation levels at birth, in childhood and in adolescence. Using 37 studies from high-income countries, we performed meta-analysis of epigenome-wide association studies (EWAS) to quantify the associations of completed years of MEA at the time of pregnancy with offspring DNA methylation levels at birth (n = 9 881), in childhood (n = 2 017), and adolescence (n = 2 740), adjusting for relevant covariates. MEA was found to be associated with DNA methylation at 473 cytosine-phosphate-guanine sites at birth, one in childhood, and four in adolescence. We observed enrichment for findings from previous EWAS on maternal folate, vitamin-B12 concentrations, maternal smoking, and pre-pregnancy BMI. The associations were directionally consistent with MEA being inversely associated with behaviours including smoking and BMI. Our findings form a bridge between socio-economic factors and biology and highlight potential pathways underlying effects of maternal education. The results broaden our understanding of bio-social associations linked to differential DNA methylation in multiple early stages of life. The data generated also offers an important resource to help a more precise understanding of the social determinants of health.

2.
Clin Epigenetics ; 15(1): 148, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697338

RESUMO

BACKGROUND: Seasonal variations in environmental exposures at birth or during gestation are associated with numerous adult traits and health outcomes later in life. Whether DNA methylation (DNAm) plays a role in the molecular mechanisms underlying the associations between birth season and lifelong phenotypes remains unclear. METHODS: We carried out epigenome-wide meta-analyses within the Pregnancy And Childhood Epigenetic Consortium to identify associations of DNAm with birth season, both at differentially methylated probes (DMPs) and regions (DMRs). Associations were examined at two time points: at birth (21 cohorts, N = 9358) and in children aged 1-11 years (12 cohorts, N = 3610). We conducted meta-analyses to assess the impact of latitude on birth season-specific associations at both time points. RESULTS: We identified associations between birth season and DNAm (False Discovery Rate-adjusted p values < 0.05) at two CpGs at birth (winter-born) and four in the childhood (summer-born) analyses when compared to children born in autumn. Furthermore, we identified twenty-six differentially methylated regions (DMR) at birth (winter-born: 8, spring-born: 15, summer-born: 3) and thirty-two in childhood (winter-born: 12, spring and summer: 10 each) meta-analyses with few overlapping DMRs between the birth seasons or the two time points. The DMRs were associated with genes of known functions in tumorigenesis, psychiatric/neurological disorders, inflammation, or immunity, amongst others. Latitude-stratified meta-analyses [higher (≥ 50°N), lower (< 50°N, northern hemisphere only)] revealed differences in associations between birth season and DNAm by birth latitude. DMR analysis implicated genes with previously reported links to schizophrenia (LAX1), skin disorders (PSORS1C, LTB4R), and airway inflammation including asthma (LTB4R), present only at birth in the higher latitudes (≥ 50°N). CONCLUSIONS: In this large epigenome-wide meta-analysis study, we provide evidence for (i) associations between DNAm and season of birth that are unique for the seasons of the year (temporal effect) and (ii) latitude-dependent variations in the seasonal associations (spatial effect). DNAm could play a role in the molecular mechanisms underlying the effect of birth season on adult health outcomes.


Assuntos
Asma , Metilação de DNA , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Carcinogênese , Inflamação , Estações do Ano
3.
Epigenomics ; 11(13): 1487-1500, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31536415

RESUMO

Aim: Cigarette smoking influences DNA methylation genome wide, in newborns from pregnancy exposure and in adults from personal smoking. Whether a unique methylation signature exists for in utero exposure in newborns is unknown. Materials & methods: We separately meta-analyzed newborn blood DNA methylation (assessed using Illumina450k Beadchip), in relation to sustained maternal smoking during pregnancy (9 cohorts, 5648 newborns, 897 exposed) and adult blood methylation and personal smoking (16 cohorts, 15907 participants, 2433 current smokers). Results & conclusion: Comparing meta-analyses, we identified numerous signatures specific to newborns along with many shared between newborns and adults. Unique smoking-associated genes in newborns were enriched in xenobiotic metabolism pathways. Our findings may provide insights into specific health impacts of prenatal exposure on offspring.


Assuntos
Metilação de DNA , Epigenômica/métodos , Efeitos Tardios da Exposição Pré-Natal/genética , Fumar Tabaco/genética , Adulto , Estudos de Coortes , Ilhas de CpG , Epigênese Genética , Feminino , Humanos , Recém-Nascido , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Fumar Tabaco/epidemiologia
4.
BMC Genomics ; 18(1): 25, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056824

RESUMO

BACKGROUND: DNA methylation has been found to associate with disease, aging and environmental exposure, but it is unknown how genome, environment and disease influence DNA methylation dynamics in childhood. RESULTS: By analysing 538 paired DNA blood samples from children at birth and at 4-5 years old and 726 paired samples from children at 4 and 8 years old from four European birth cohorts using the Illumina Infinium Human Methylation 450 k chip, we have identified 14,150 consistent age-differential methylation sites (a-DMSs) at epigenome-wide significance of p < 1.14 × 10-7. Genes with an increase in age-differential methylation were enriched in pathways related to 'development', and were more often located in bivalent transcription start site (TSS) regions, which can silence or activate expression of developmental genes. Genes with a decrease in age-differential methylation were involved in cell signalling, and enriched on H3K27ac, which can predict developmental state. Maternal smoking tended to decrease methylation levels at the identified da-DMSs. We also found 101 a-DMSs (0.71%) that were regulated by genetic variants using cis-differential Methylation Quantitative Trait Locus (cis-dMeQTL) mapping. Moreover, a-DMS-associated genes during early development were significantly more likely to be linked with disease. CONCLUSION: Our study provides new insights into the dynamic epigenetic landscape of the first 8 years of life.


Assuntos
Desenvolvimento Infantil , Metilação de DNA , Epigênese Genética , Epigenômica , Criança , Pré-Escolar , Ilhas de CpG , Epigenômica/métodos , Feminino , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Lactente , Recém-Nascido , Exposição Materna/efeitos adversos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Locos de Características Quantitativas , Fumar/efeitos adversos
6.
Am J Hum Genet ; 98(4): 680-96, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040690

RESUMO

Epigenetic modifications, including DNA methylation, represent a potential mechanism for environmental impacts on human disease. Maternal smoking in pregnancy remains an important public health problem that impacts child health in a myriad of ways and has potential lifelong consequences. The mechanisms are largely unknown, but epigenetics most likely plays a role. We formed the Pregnancy And Childhood Epigenetics (PACE) consortium and meta-analyzed, across 13 cohorts (n = 6,685), the association between maternal smoking in pregnancy and newborn blood DNA methylation at over 450,000 CpG sites (CpGs) by using the Illumina 450K BeadChip. Over 6,000 CpGs were differentially methylated in relation to maternal smoking at genome-wide statistical significance (false discovery rate, 5%), including 2,965 CpGs corresponding to 2,017 genes not previously related to smoking and methylation in either newborns or adults. Several genes are relevant to diseases that can be caused by maternal smoking (e.g., orofacial clefts and asthma) or adult smoking (e.g., certain cancers). A number of differentially methylated CpGs were associated with gene expression. We observed enrichment in pathways and processes critical to development. In older children (5 cohorts, n = 3,187), 100% of CpGs gave at least nominal levels of significance, far more than expected by chance (p value < 2.2 × 10(-16)). Results were robust to different normalization methods used across studies and cell type adjustment. In this large scale meta-analysis of methylation data, we identified numerous loci involved in response to maternal smoking in pregnancy with persistence into later childhood and provide insights into mechanisms underlying effects of this important exposure.


Assuntos
Metilação de DNA , Epigênese Genética , Fumar/efeitos adversos , Asma/etiologia , Asma/genética , Criança , Pré-Escolar , Mapeamento Cromossômico , Fenda Labial/etiologia , Fenda Labial/genética , Fissura Palatina/etiologia , Fissura Palatina/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Gravidez , População Branca/genética
8.
PLoS One ; 10(8): e0133604, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26244898

RESUMO

OBJECTIVE: The purpose of this study was to examine the association between pre and post environmental tobacco smoke (ETS) exposure and behavioral problems in schoolchildren. METHODS: In the cross-sectional 6 cities Study conducted in France, 5221 primary school children were investigated. Pre- and postnatal exposure to secondhand tobacco smoke at home was assessed using a parent questionnaire. Child's behavioral outcomes (emotional symptoms and conduct problems) were evaluated by the Strengths and Difficulties Questionnaire (SDQ) completed by the parents. RESULTS: ETS exposure during the postnatal period and during both pre- and postnatal periods was associated with behavioral problems in children. Abnormal emotional symptoms (internalizing problems) were related to ETS exposure in children who were exposed during the pre- and postnatal periods with an OR of 1.72 (95% Confidence Interval (CI)= 1.36-2.17), whereas the OR was estimated to be 1.38 (95% CI= 1.12-1.69) in the case of postnatal exposure only. Abnormal conduct problems (externalizing problems) were related to ETS exposure in children who were exposed during the pre- and postnatal periods with an OR of 1.94 (95% CI= 1.51-2.50), whereas the OR was estimated to be 1.47 (95% CI=1.17-1.84) in the case of postnatal exposure only. Effect estimates were adjusted for gender, study center, ethnic origin, child age, low parental education, current physician diagnosed asthma, siblings, preterm birth and single parenthood. CONCLUSION: Postnatal ETS exposure, alone or in association with prenatal exposure, increases the risk of behavioral problems in school-age children.


Assuntos
Exposição Ambiental/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/psicologia , Comportamento Problema/psicologia , Poluição por Fumaça de Tabaco , Adolescente , Sintomas Afetivos/etiologia , Sintomas Afetivos/fisiopatologia , Sintomas Afetivos/psicologia , Criança , Comportamento Infantil/fisiologia , Comportamento Infantil/psicologia , Estudos Transversais , Feminino , Humanos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Risco , Instituições Acadêmicas , Estudantes/psicologia , Estudantes/estatística & dados numéricos
9.
BMC Public Health ; 13: 506, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23705590

RESUMO

BACKGROUND: Studies have shown diverse strength of evidence for the associations between air pollutants and childhood asthma, but these associations have scarcely been documented in the early life. The purpose of this study was to evaluate the impacts of various air pollutants on the development of asthma phenotypes in the first year of life. METHODS: Adjusted odds ratios were estimated to assess the relationships between exposures to air pollutants and single and multi-dimensional asthma phenotypes in the first year of life in children of the EDEN mother-child cohort study (n = 1,765 mother-child pairs). The Generalized Estimating Equation (GEE) model was used to determine the associations between prenatal maternal smoking and in utero exposure to traffic-related air pollution and asthma phenotypes (data were collected when children were at birth, and at 4, 8 and 12 months of age). Adjusted Population Attributable Risk (aPAR) was estimated to measure the impacts of air pollutants on health outcomes. RESULTS: In the first year of life, both single and multi-dimensional asthma phenotypes were positively related to heavy parental smoking, traffic-related air pollution and dampness, but negatively associated with contact with cats and domestic wood heating. Adjusted odds ratios (aORs) for traffic-related air pollution were the highest [1.71 (95% Confidence Interval (CI): 1.08-2.72) for ever doctor-diagnosed asthma, 1.44 (95% CI: 1.05-1.99) for bronchiolitis with wheezing, 2.01 (95% CI: 1.23-3.30) for doctor-diagnosed asthma with a history of bronchiolitis]. The aPARs based on these aORs were 13.52%, 9.39%, and 17.78%, respectively. Results persisted for prenatal maternal smoking and in utero exposure to traffic-related air pollution, although statistically significant associations were observed only with the asthma phenotype of ever bronchiolitis. CONCLUSIONS: After adjusting for potential confounders, traffic-related air pollution in utero life and in the first year of life, had a greater impact on the development of asthma phenotypes compared to other factors.


Assuntos
Poluentes Atmosféricos/análise , Asma/prevenção & controle , Comportamentos Relacionados com a Saúde , Exposição Materna/prevenção & controle , Adulto , Asma/etiologia , Asma/genética , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/prevenção & controle , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Exposição Materna/efeitos adversos , Fenótipo , Inquéritos e Questionários
10.
BMC Pregnancy Childbirth ; 11: 87, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22047167

RESUMO

BACKGROUND: Toxicants can cross the placenta and expose the developing fetus to chemical contamination leading to possible adverse health effects, by potentially inducing alterations in immune competence. Our aim was to investigate the impacts of maternal exposure to air pollution before and during pregnancy on newborn's immune system. METHODS: Exposure to background particulate matter less than 10 µm in diameter (PM10) and nitrogen dioxide (NO2) was assessed in 370 women three months before and during pregnancy using monitoring stations. Personal exposure to four volatile organic compounds (VOCs) was measured in a subsample of 56 non-smoking women with a diffusive air sampler during the second trimester of pregnancy. Cord blood was analyzed at birth by multi-parameter flow cytometry to determine lymphocyte subsets. RESULTS: Among other immunophenotypic changes in cord blood, decreases in the CD4+CD25+ T-cell percentage of 0.82% (p = 0.01), 0.71% (p = 0.04), 0.88% (p = 0.02), and 0.59% (p = 0.04) for a 10 µg/m3 increase in PM10 levels three months before and during the first, second and third trimester of pregnancy, respectively, were observed after adjusting for confounders. A similar decrease in CD4+CD25+ T-cell percentage was observed in association with personal exposure to benzene. A similar trend was observed between NO2 exposure and CD4+CD25+ T-cell percentage; however the association was stronger between NO2 exposure and an increased percentage of CD8+ T-cells. CONCLUSIONS: These data suggest that maternal exposure to air pollution before and during pregnancy may alter the immune competence in offspring thus increasing the child's risk of developing health conditions later in life, including asthma and allergies.


Assuntos
Poluentes Atmosféricos/análise , Exposição Materna , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar , Benzeno/efeitos adversos , Benzeno/análise , Estudos de Coortes , Monitoramento Ambiental , Feminino , Sangue Fetal/metabolismo , Citometria de Fluxo , França , Idade Gestacional , Humanos , Recém-Nascido , Subpopulações de Linfócitos/metabolismo , Masculino , Gravidez , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA