Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Oncogene ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39048659

RESUMO

Solid tumours have abnormally high intracellular [Na+]. The activity of various Na+ channels may underlie this Na+ accumulation. Voltage-gated Na+ channels (VGSCs) have been shown to be functionally active in cancer cell lines, where they promote invasion. However, the mechanisms involved, and clinical relevance, are incompletely understood. Here, we show that protein expression of the Nav1.5 VGSC subtype strongly correlates with increased metastasis and shortened cancer-specific survival in breast cancer patients. In addition, VGSCs are functionally active in patient-derived breast tumour cells, cell lines, and cancer-associated fibroblasts. Knockdown of Nav1.5 in a mouse model of breast cancer suppresses expression of invasion-regulating genes. Nav1.5 activity increases ATP demand and glycolysis in breast cancer cells, likely by upregulating activity of the Na+/K+ ATPase, thus promoting H+ production and extracellular acidification. The pH of murine xenograft tumours is lower at the periphery than in the core, in regions of higher proliferation and lower apoptosis. In turn, acidic extracellular pH elevates persistent Na+ influx through Nav1.5 into breast cancer cells. Together, these findings show positive feedback between extracellular acidification and the movement of Na+ into cancer cells which can facilitate invasion. These results highlight the clinical significance of Nav1.5 activity as a potentiator of breast cancer metastasis and provide further evidence supporting the use of VGSC inhibitors in cancer treatment.

2.
Sci Rep ; 14(1): 14793, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926422

RESUMO

During metastatic dissemination, circulating tumour cells (CTCs) enter capillary beds, where they experience mechanical constriction forces. The transient and persistent effects of these forces on CTCs behaviour remain poorly understood. Here, we developed a high-throughput microfluidic platform mimicking human capillaries to investigate the impact of mechanical constriction forces on malignant and normal breast cell lines. We observed that capillary constrictions induced nuclear envelope rupture in both cancer and normal cells, leading to transient changes in nuclear and cytoplasmic area. Constriction forces transiently activated cGAS/STING and pathways involved in inflammation (NF-κB, STAT and IRF3), especially in the non-malignant cell line. Furthermore, the non-malignant cell line experienced transcriptional changes, particularly downregulation of epithelial markers, while the metastatic cell lines showed minimal alterations. These findings suggest that mechanical constriction forces within capillaries may promote differential effects in malignant and normal cell lines.


Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Linhagem Celular Tumoral , Capilares/patologia , Núcleo Celular/metabolismo , Metástase Neoplásica , Membrana Nuclear/metabolismo
3.
Biosens Bioelectron ; 262: 116513, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941688

RESUMO

Lab-on-Chip electrochemical sensors, such as Ion-Sensitive Field-Effect Transistors (ISFETs), are being developed for use in point-of-care diagnostics, such as pH detection of tumour microenvironments, due to their integration with standard Complementary Metal Oxide Semiconductor (CMOS) technology. With this approach, the passivation of the CMOS process is used as a sensing layer to minimise post-processing, and Silicon Nitride (Si3N4) is the most common material at the microchip surface. ISFETs have the potential to be used for cell-based assays however, there is a poor understanding of the biocompatibility of microchip surfaces. Here, we quantitatively evaluated cell adhesion, morphogenesis, proliferation and mechano-responsiveness of both normal and cancer cells cultured on a Si3N4, sensor surface. We demonstrate that both normal and cancer cell adhesion decreased on Si3N4. Activation of the mechano-responsive transcription regulators, YAP/TAZ, are significantly decreased in cancer cells on Si3N4 in comparison to standard cell culture plastic, whilst proliferation marker, Ki67, expression markedly increased. Non-tumorigenic cells on chip showed less sensitivity to culture on Si3N4 than cancer cells. Treatment with extracellular matrix components increased cell adhesion in normal and cancer cell cultures, surpassing the adhesiveness of plastic alone. Moreover, poly-l-ornithine and laminin treatment restored YAP/TAZ levels in both non-tumorigenic and cancer cells to levels comparable to those observed on plastic. Thus, engineering the electrochemical sensor surface with treatments will provide a more physiologically relevant environment for future cell-based assay development on chip.


Assuntos
Técnicas Biossensoriais , Adesão Celular , Proliferação de Células , Dispositivos Lab-On-A-Chip , Semicondutores , Humanos , Técnicas Biossensoriais/instrumentação , Compostos de Silício/química , Técnicas de Cultura de Células/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Neoplasias , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral
4.
Cell Rep ; 43(6): 114243, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38805398

RESUMO

Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.


Assuntos
Células-Tronco Pluripotentes Induzidas , Xeroderma Pigmentoso , Xeroderma Pigmentoso/patologia , Xeroderma Pigmentoso/metabolismo , Xeroderma Pigmentoso/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Complexo de Endopeptidases do Proteassoma/metabolismo , Diferenciação Celular , Dano ao DNA , Modelos Biológicos , Multiômica
5.
Cell Rep ; 43(5): 114016, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38636520

RESUMO

How cancer cells determine their shape in response to three-dimensional (3D) geometric and mechanical cues is unclear. We develop an approach to quantify the 3D cell shape of over 60,000 melanoma cells in collagen hydrogels using high-throughput stage-scanning oblique plane microscopy (ssOPM). We identify stereotypic and environmentally dependent changes in shape and protrusivity depending on whether a cell is proximal to a flat and rigid surface or is embedded in a soft environment. Environmental sensitivity metrics calculated for small molecules and gene knockdowns identify interactions between the environment and cellular factors that are important for morphogenesis. We show that the Rho guanine nucleotide exchange factor (RhoGEF) TIAM2 contributes to shape determination in environmentally independent ways but that non-muscle myosin II, microtubules, and the RhoGEF FARP1 regulate shape in ways dependent on the microenvironment. Thus, changes in cancer cell shape in response to 3D geometric and mechanical cues are modulated in both an environmentally dependent and independent fashion.


Assuntos
Forma Celular , Fatores de Troca do Nucleotídeo Guanina , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Linhagem Celular Tumoral , Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Melanoma/patologia , Melanoma/metabolismo
6.
Sci Adv ; 9(4): eadd0636, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696495

RESUMO

Almost all living cells maintain size uniformity through successive divisions. Proteins that over and underscale with size can act as rheostats, which regulate cell cycle progression. Using a multiomic strategy, we leveraged the heterogeneity of melanoma cell lines to identify peptides, transcripts, and phosphorylation events that differentially scale with cell size. Subscaling proteins are enriched in regulators of the DNA damage response and cell cycle progression, whereas super-scaling proteins included regulators of the cytoskeleton, extracellular matrix, and inflammatory response. Mathematical modeling suggested that decoupling growth and proliferative signaling may facilitate cell cycle entry over senescence in large cells when mitogenic signaling is decreased. Regression analysis reveals that up-regulation of TP53 or CDKN1A/p21CIP1 is characteristic of proliferative cancer cells with senescent-like sizes/proteomes. This study provides one of the first demonstrations of size-scaling phenomena in cancer and how morphology influences the chemistry of the cell.


Assuntos
Melanoma , Proteoma , Humanos , Melanoma/genética , Melanoma/metabolismo , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Senescência Celular/genética
7.
STAR Protoc ; 4(1): 101942, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36525347

RESUMO

Small interfering RNA (siRNA) screening approaches used with quantitative single-cell analysis can uncover the roles of genes in cell morphogenesis. Here, we present a high-throughput automated phenotypic screening technique to quantify a single cell shape in cancer cells cultured on top of soft 3D hydrogels. We describe reverse transfection of cells with siRNAs and seeding of these cells on top of collagen, followed by image analysis to quantify morphology of a single cell and population levels in low-elasticity matrices. For complete details on the use and execution of this protocol, please refer to Bousgouni et al. (2022).1.


Assuntos
Hidrogéis , Neoplasias , Ensaios de Triagem em Larga Escala/métodos , RNA Interferente Pequeno/genética , Diagnóstico por Imagem , Fenótipo , Neoplasias/genética
8.
Commun Biol ; 5(1): 1178, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369329

RESUMO

Cancer cells feature a resting membrane potential (Vm) that is depolarized compared to normal cells, and express active ionic conductances, which factor directly in their pathophysiological behavior. Despite similarities to 'excitable' tissues, relatively little is known about cancer cell Vm dynamics. Here high-throughput, cellular-resolution Vm imaging reveals that Vm fluctuates dynamically in several breast cancer cell lines compared to non-cancerous MCF-10A cells. We characterize Vm fluctuations of hundreds of human triple-negative breast cancer MDA-MB-231 cells. By quantifying their Dynamic Electrical Signatures (DESs) through an unsupervised machine-learning protocol, we identify four classes ranging from "noisy" to "blinking/waving". The Vm of MDA-MB-231 cells exhibits spontaneous, transient hyperpolarizations inhibited by the voltage-gated sodium channel blocker tetrodotoxin, and by calcium-activated potassium channel inhibitors apamin and iberiotoxin. The Vm of MCF-10A cells is comparatively static, but fluctuations increase following treatment with transforming growth factor-ß1, a canonical inducer of the epithelial-to-mesenchymal transition. These data suggest that the ability to generate Vm fluctuations may be a property of hybrid epithelial-mesenchymal cells or those originated from luminal progenitors.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Células MCF-7 , Potenciais da Membrana
9.
iScience ; 25(8): 104795, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36039362

RESUMO

Rho GTP Exchange Factors (RhoGEFs) and Rho GTPase Activating Proteins (RhoGAPs) are large families of molecules that regulate shape determination in all eukaryotes. In pathologies such as melanoma, RhoGEF and RhoGAP activity underpins the ability of cells to invade tissues of varying elasticity. To identify RhoGEFs and RhoGAPs that regulate melanoma cell shape on soft and/or stiff materials, we performed genetic screens, in tandem with single-cell quantitative morphological analysis. We show that ARHGEF9/Collybistin (Cb) is essential for cell shape determination on both soft and stiff materials, and in cells embedded in 3D soft hydrogel. ARHGEF9 is required for melanoma cells to invade 3D matrices. Depletion of ARHGEF9 results in loss of tension at focal adhesions decreased cell-wide contractility, and the inability to stabilize protrusions. Taken together we show that ARHGEF9 promotes the formation of actin-rich filopodia, which serves to establish and stabilize adhesions and determine melanoma cell shape.

10.
Sci Data ; 9(1): 395, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817775

RESUMO

When used in combination with hormone treatment, Palbociclib prolongs progression-free survival of patients with hormone receptor positive breast cancer. Mechanistically, Palbociclib inhibits CDK4/6 activity but the basis for differing sensitivity of cancer to Palbociclib is poorly understood. A common observation in a subset of Triple Negative Breast Cancers (TNBCs) is that prolonged CDK4/6 inhibition can engage a senescence-like state where cells exit the cell cycle, whilst, remaining metabolically active. To better understand the senescence-like cell state which arises after Palbociclib treatment we used mass spectrometry to quantify the proteome, phosphoproteome, and secretome of Palbociclib-treated MDA-MB-231 TNBC cells. We observed altered levels of cell cycle regulators, immune response, and key senescence markers upon Palbociclib treatment. These datasets provide a starting point for the derivation of biomarkers which could inform the future use CDK4/6 inhibitors in TNBC subtypes and guide the development of potential combination therapies.


Assuntos
Neoplasias de Mama Triplo Negativas , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Feminino , Humanos , Proteoma , Proteômica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
11.
Genome Res ; 32(4): 750-765, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35197309

RESUMO

The morphology of breast cancer cells is often used as an indicator of tumor severity and prognosis. Additionally, morphology can be used to identify more fine-grained, molecular developments within a cancer cell, such as transcriptomic changes and signaling pathway activity. Delineating the interface between morphology and signaling is important to understand the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal transition and consequently metastasize. However, the exact regulatory systems that define these changes remain poorly characterized. In this study, we used a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow allowed the discovery of unbiased and context-specific gene expression signatures and cell signaling subnetworks relevant to the regulation of cell shape, rather than focusing on the identification of previously known, but not always representative, pathways. By constructing a cell-shape signaling network from shape-correlated gene expression modules and their upstream regulators, we found central roles for developmental pathways such as WNT and Notch, as well as evidence for the fine control of NF-kB signaling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a gene expression module enriched in the RAP1 signaling pathway as a mediator between the sensing of mechanical stimuli and regulation of NF-kB activity, with specific relevance to cell shape in breast cancer.


Assuntos
Neoplasias da Mama , NF-kappa B , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Forma Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Fenótipo , Transcriptoma
12.
Clin Exp Metastasis ; 38(4): 337-342, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34241735

RESUMO

The behaviour of circulating tumour cells in the microcirculation remains poorly understood. Growing evidence suggests that biomechanical adaptations and interactions with blood components, i.e. immune cells and platelets within capillary beds, may add more complexity to CTCs journey towards metastasis. Revisiting how these mediators impact the ability of circulating tumour cells to survive and metastasise, will be vital to understand the role of microcirculation and advance our knowledge on metastasis.


Assuntos
Microcirculação , Metástase Neoplásica/prevenção & controle , Células Neoplásicas Circulantes/patologia , Fenômenos Biomecânicos , Humanos , Metástase Neoplásica/patologia , Neutrófilos/patologia
13.
Br J Cancer ; 124(1): 58-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33257836

RESUMO

During metastasis, tumour cells navigating the vascular circulatory system-circulating tumour cells (CTCs)-encounter capillary beds, where they start the process of extravasation. Biomechanical constriction forces exerted by the microcirculation compromise the survival of tumour cells within capillaries, but a proportion of CTCs manage to successfully extravasate and colonise distant sites. Despite the profound importance of this step in the progression of metastatic cancers, the factors about this deadly minority of cells remain elusive. Growing evidence suggests that mechanical forces exerted by the capillaries might induce adaptive mechanisms in CTCs, enhancing their survival and metastatic potency. Advances in microfluidics have enabled a better understanding of the cell-survival capabilities adopted in capillary-mimicking constrictions. In this review, we will highlight adaptations developed by CTCs to endure mechanical constraints in the microvasculature and outline how these mechanical forces might trigger dynamic changes towards a more invasive phenotype. A better understanding of the dynamic mechanisms adopted by CTCs within the microcirculation that ultimately lead to metastasis could open up novel therapeutic avenues.


Assuntos
Invasividade Neoplásica/patologia , Células Neoplásicas Circulantes/patologia , Animais , Humanos , Microcirculação/fisiologia , Microfluídica
14.
PLoS Biol ; 18(12): e3000986, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33378358

RESUMO

Clustering of the enteropathogenic Escherichia coli (EPEC) type III secretion system (T3SS) effector translocated intimin receptor (Tir) by intimin leads to actin polymerisation and pyroptotic cell death in macrophages. The effect of Tir clustering on the viability of EPEC-infected intestinal epithelial cells (IECs) is unknown. We show that EPEC induces pyroptosis in IECs in a Tir-dependent but actin polymerisation-independent manner, which was enhanced by priming with interferon gamma (IFNγ). Mechanistically, Tir clustering triggers rapid Ca2+ influx, which induces lipopolysaccharide (LPS) internalisation, followed by activation of caspase-4 and pyroptosis. Knockdown of caspase-4 or gasdermin D (GSDMD), translocation of NleF, which blocks caspase-4 or chelation of extracellular Ca2+, inhibited EPEC-induced cell death. IEC lines with low endogenous abundance of GSDMD were resistant to Tir-induced cell death. Conversely, ATP-induced extracellular Ca2+ influx enhanced cell death, which confirmed the key regulatory role of Ca2+ in EPEC-induced pyroptosis. We reveal a novel mechanism through which infection with an extracellular pathogen leads to pyroptosis in IECs.


Assuntos
Cálcio/metabolismo , Proteínas de Escherichia coli/metabolismo , Piroptose/fisiologia , Receptores de Superfície Celular/metabolismo , Actinas/metabolismo , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/fisiologia , Análise por Conglomerados , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Células Epiteliais/metabolismo , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Transporte Proteico , Receptores de Superfície Celular/fisiologia , Transdução de Sinais/fisiologia , Sistemas de Secreção Tipo III/metabolismo
15.
EMBO J ; 39(11): e104419, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32350921

RESUMO

Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina A/metabolismo , Ciclina B/metabolismo , Mitose , Proteína Fosfatase 2/metabolismo , Proteína Quinase CDC2/genética , Linhagem Celular , Ciclina A/genética , Ciclina B/genética , Humanos , Proteína Fosfatase 2/genética
17.
Nat Commun ; 10(1): 2213, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101826

RESUMO

Spiradenoma and cylindroma are distinctive skin adnexal tumors with sweat gland differentiation and potential for malignant transformation and aggressive behaviour. We present the genomic analysis of 75 samples from 57 representative patients including 15 cylindromas, 17 spiradenomas, 2 cylindroma-spiradenoma hybrid tumors, and 24 low- and high-grade spiradenocarcinoma cases, together with morphologically benign precursor regions of these cancers. We reveal somatic or germline alterations of the CYLD gene in 15/15 cylindromas and 5/17 spiradenomas, yet only 2/24 spiradenocarcinomas. Notably, we find a recurrent missense mutation in the kinase domain of the ALPK1 gene in spiradenomas and spiradenocarcinomas, which is mutually exclusive from mutation of CYLD and can activate the NF-κB pathway in reporter assays. In addition, we show that high-grade spiradenocarcinomas carry loss-of-function TP53 mutations, while cylindromas may have disruptive mutations in DNMT3A. Thus, we reveal the genomic landscape of adnexal tumors and therapeutic targets.


Assuntos
Carcinoma Adenoide Cístico/genética , Enzima Desubiquitinante CYLD/genética , Proteínas Quinases/genética , Neoplasias das Glândulas Sudoríparas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Adenoide Cístico/patologia , Estudos de Coortes , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Análise Mutacional de DNA , Feminino , Humanos , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Domínios Proteicos/genética , Neoplasias das Glândulas Sudoríparas/patologia , Glândulas Sudoríparas/patologia , Proteína Supressora de Tumor p53/genética , Sequenciamento do Exoma
18.
Stem Cell Reports ; 12(4): 743-756, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30880078

RESUMO

Differentiated cells are epigenetically stable, but can be reprogrammed to pluripotency by expression of the OSKM transcription factors. Despite significant effort, relatively little is known about the cellular requirements for reprogramming and how they affect the properties of induced pluripotent stem cells. We have performed high-content screening with small interfering RNAs targeting 300 chromatin-associated factors and extracted colony-level quantitative features. This revealed five morphological phenotypes in early reprogramming, including one displaying large round colonies exhibiting an early block of reprogramming. Using RNA sequencing, we identified transcriptional changes associated with these phenotypes. Furthermore, double knockdown epistasis experiments revealed that BRCA1, BARD1, and WDR5 functionally interact and are required for the DNA damage response. In addition, the mesenchymal-to-epithelial transition is affected in Brca1, Bard1, and Wdr5 knockdowns. Our data provide a resource of chromatin-associated factors in early reprogramming and underline colony morphology as an important high-dimensional readout for reprogramming quality.


Assuntos
Proteína BRCA1/genética , Reprogramação Celular/genética , Dano ao DNA , Transição Epitelial-Mesenquimal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Animais , Proteína BRCA1/metabolismo , Cromatina/genética , Cromatina/metabolismo , Reparo do DNA , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Fenótipo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
19.
Comput Struct Biotechnol J ; 16: 237-245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105089

RESUMO

Mechanics and biochemical signaling are both often deregulated in cancer, leading toincreased cell invasiveness, proliferation, and survival. The dynamics and interactions of cytoskeletal components control basic mechanical properties, such as cell tension, stiffness, and engagement with the extracellular environment, which can lead to extracellular matrix remodeling. Intracellular mechanics can alter signaling and transcription factors, impacting cell decision making. Additionally, signaling from soluble and mechanical factors in the extracellular environment, such as substrate stiffness and ligand density, can modulate cytoskeletal dynamics. Computational models closely integrated with experimental support, incorporating cancer-specific parameters, can provide quantitative assessments and serve as predictive tools toward dissecting the feedback between signaling and mechanics and across multiple scales and domains in tumor progression.

20.
Proc Natl Acad Sci U S A ; 115(10): 2532-2537, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463760

RESUMO

Human cells that suffer mild DNA damage can enter a reversible state of growth arrest known as quiescence. This decision to temporarily exit the cell cycle is essential to prevent the propagation of mutations, and most cancer cells harbor defects in the underlying control system. Here we present a mechanistic mathematical model to study the proliferation-quiescence decision in nontransformed human cells. We show that two bistable switches, the restriction point (RP) and the G1/S transition, mediate this decision by integrating DNA damage and mitogen signals. In particular, our data suggest that the cyclin-dependent kinase inhibitor p21 (Cip1/Waf1), which is expressed in response to DNA damage, promotes quiescence by blocking positive feedback loops that facilitate G1 progression downstream of serum stimulation. Intriguingly, cells exploit bistability in the RP to convert graded p21 and mitogen signals into an all-or-nothing cell-cycle response. The same mechanism creates a window of opportunity where G1 cells that have passed the RP can revert to quiescence if exposed to DNA damage. We present experimental evidence that cells gradually lose this ability to revert to quiescence as they progress through G1 and that the onset of rapid p21 degradation at the G1/S transition prevents this response altogether, insulating S phase from mild, endogenous DNA damage. Thus, two bistable switches conspire in the early cell cycle to provide both sensitivity and robustness to external stimuli.


Assuntos
Ciclo Celular , Proliferação de Células , Dano ao DNA , Modelos Biológicos , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Técnicas de Inativação de Genes , Humanos , Mitógenos/genética , Mitógenos/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA