Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rev ; 97(2): 699-720, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28202600

RESUMO

It has been suggested that highly social mammals, such as naked mole rats and humans, are long-lived due to neoteny (the prolongation of youth). In both species, aging cannot operate as a mechanism facilitating natural selection because the pressure of this selection is strongly reduced due to 1) a specific social structure where only the "queen" and her "husband(s)" are involved in reproduction (naked mole rats) or 2) substituting fast technological progress for slow biological evolution (humans). Lists of numerous traits of youth that do not disappear with age in naked mole rats and humans are presented and discussed. A high resistance of naked mole rats to cancer, diabetes, cardiovascular and brain diseases, and many infections explains why their mortality rate is very low and almost age-independent and why their lifespan is more than 30 years, versus 3 years in mice. In young humans, curves of mortality versus age start at extremely low values. However, in the elderly, human mortality strongly increases. High mortality rates in other primates are observed at much younger ages than in humans. The inhibition of the aging process in humans by specific drugs seems to be a promising approach to prolong our healthspan. This might be a way to retard aging, which is already partially accomplished via the natural physiological phenomenon neoteny.


Assuntos
Envelhecimento/fisiologia , Hominidae/metabolismo , Longevidade/fisiologia , Neoplasias/metabolismo , Estresse Oxidativo/fisiologia , Animais , Evolução Biológica , Humanos
2.
Aging (Albany NY) ; 6(2): 140-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24519884

RESUMO

A comparative electron-microscopic study of ultrastructure of mitochondria in skeletal muscles of the 3- and 24-month-old Wistar and OXYS rats revealed age-dependent changes in both general organization of the mitochondrial reticulum and ultrastructure of mitochondria. The most pronounced ultrastructure changes were detected in the OXYS rats suffering from permanent oxidative stress. In the OXYS rats, significant changes in mitochondrial ultrastructure were detected already at the age of 3 months. Among them, there were the appearance of megamitochondria and reduction of cristae resulting in formation of cristae-free regions inside mitochondria. In the 24-month-old OXYS rats, mitochondrial reticulum was completely destroyed. In the isotropic region of muscle fiber, only small solitary mitochondria were present. There appeared regions of lysed myofibrils as well as vast regions filled with autophagosomes. A mitochondrial antioxidant SkQ1 (given to rats with food daily in the dose of 250 nmol/kg of body weight for 5 months beginning from the age of 19 months) prevented development of age-dependent destructive changes in both the Wistar and OXYS rats.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Fibras Musculares Esqueléticas/ultraestrutura , Plastoquinona/análogos & derivados , Sarcopenia/tratamento farmacológico , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Masculino , Plastoquinona/farmacologia , Plastoquinona/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Wistar
3.
Aging (Albany NY) ; 3(1): 44-54, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21191149

RESUMO

Pathogenesis of age-related macular degeneration (AMD), the leading cause of blindness in the world, remains poorly understood. This makes it necessary to create animal models for studying AMD pathogenesis and to design new therapeutic approaches. Here we showed that retinopathy in OXYS rats is similar to human AMD according to clinical signs, morphology, and vascular endothelium growth factor (VEGF) and pigment epithelium-derived factor (PEDF) genes expression. Clinical signs of retinopathy OXYS rats manifest by the age 3 months against the background of significantly reduced expression level of VEGF and PEDF genes due to the decline of the amount of retinal pigment epithelium (RPE) cells and alteration of choroidal microcirculation. The disruption in OXYS rats' retina starts at the age of 20 days and appears as reduce the area of RPE cells but does not affect their ultrastructure. Ultrastructural pathological alterations of RPE as well as develop forms of retinopathy are observed in OXYS rats from age 12 months and manifested as excessive accumulation of lipofuscin in RPE regions adjacent to the rod cells, whirling extentions of the basement membrane into the cytoplasm. These data suggest that primary cellular degenerative alterations in the RPE cells secondarily lead to choriocapillaris atrophy and results in complete loss of photoreceptor cells in the OXYS rats' retina by the age of 24 months.


Assuntos
Envelhecimento/fisiologia , Degeneração Macular/patologia , Ratos Endogâmicos , Epitélio Pigmentado da Retina/patologia , Animais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Expressão Gênica , Humanos , Masculino , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Ratos , Ratos Wistar , Retina/patologia , Retina/ultraestrutura , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Serpinas/genética , Serpinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Biochim Biophys Acta ; 1787(5): 437-61, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19159610

RESUMO

Antioxidants specifically addressed to mitochondria have been studied to determine if they can decelerate senescence of organisms. For this purpose, a project has been established with participation of several research groups from Russia and some other countries. This paper summarizes the first results of the project. A new type of compounds (SkQs) comprising plastoquinone (an antioxidant moiety), a penetrating cation, and a decane or pentane linker has been synthesized. Using planar bilayer phospholipid membrane (BLM), we selected SkQ derivatives with the highest permeability, namely plastoquinonyl-decyl-triphenylphosphonium (SkQ1), plastoquinonyl-decyl-rhodamine 19 (SkQR1), and methylplastoquinonyldecyltriphenylphosphonium (SkQ3). Anti- and prooxidant properties of these substances and also of ubiquinonyl-decyl-triphenylphosphonium (MitoQ) were tested in aqueous solution, detergent micelles, liposomes, BLM, isolated mitochondria, and cell cultures. In mitochondria, micromolar cationic quinone derivatives were found to be prooxidants, but at lower (sub-micromolar) concentrations they displayed antioxidant activity that decreases in the series SkQ1=SkQR1>SkQ3>MitoQ. SkQ1 was reduced by mitochondrial respiratory chain, i.e. it is a rechargeable antioxidant. Nanomolar SkQ1 specifically prevented oxidation of mitochondrial cardiolipin. In cell cultures, SkQR1, a fluorescent SkQ derivative, stained only one type of organelles, namely mitochondria. Extremely low concentrations of SkQ1 or SkQR1 arrested H(2)O(2)-induced apoptosis in human fibroblasts and HeLa cells. Higher concentrations of SkQ are required to block necrosis initiated by reactive oxygen species (ROS). In the fungus Podospora anserina, the crustacean Ceriodaphnia affinis, Drosophila, and mice, SkQ1 prolonged lifespan, being especially effective at early and middle stages of aging. In mammals, the effect of SkQs on aging was accompanied by inhibition of development of such age-related diseases and traits as cataract, retinopathy, glaucoma, balding, canities, osteoporosis, involution of the thymus, hypothermia, torpor, peroxidation of lipids and proteins, etc. SkQ1 manifested a strong therapeutic action on some already pronounced retinopathies, in particular, congenital retinal dysplasia. With drops containing 250 nM SkQ1, vision was restored to 67 of 89 animals (dogs, cats, and horses) that became blind because of a retinopathy. Instillation of SkQ1-containing drops prevented the loss of sight in rabbits with experimental uveitis and restored vision to animals that had already become blind. A favorable effect of the same drops was also achieved in experimental glaucoma in rabbits. Moreover, the SkQ1 pretreatment of rats significantly decreased the H(2)O(2) or ischemia-induced arrhythmia of the isolated heart. SkQs strongly reduced the damaged area in myocardial infarction or stroke and prevented the death of animals from kidney ischemia. In p53(-/-) mice, 5 nmol/kgxday SkQ1 decreased the ROS level in the spleen and inhibited appearance of lymphomas to the same degree as million-fold higher concentration of conventional antioxidant NAC. Thus, SkQs look promising as potential tools for treatment of senescence and age-related diseases.


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/fisiologia , Envelhecimento/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/fisiologia , Transporte de Elétrons/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Oxidantes/farmacologia , Oxirredução , Plastoquinona/análogos & derivados , Plastoquinona/farmacologia , Ratos , Ubiquinona/fisiologia
5.
Mol Cell Biochem ; 256-257(1-2): 341-58, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14977193

RESUMO

Association of mitochondrial population to a mitochondrial reticulum is typical of many types of the healthy cells. This allows the cell to organize a united intracellular power-transmitting system. However, such an association can create some difficulties for the cell when a part of the reticulum is damaged or when mitochondria should migrate from one cell region to another. It is shown that in these cases decomposition of extended mitochondria to small roundish organelles takes place (the thread-grain transition). As an intermediate step of this process, formation of beads-like mitochondria occurs when several swollen parts of the mitochondrial filament are interconnected with thin thread-like mitochondrial structures. A hypothesis is put forward that the thread-grain transition is used as a mechanism to isolate a damaged part of the mitochondrial system from its intact parts. If the injury is not repaired, spherical mitochondrion originated from the damaged part of the reticulum is assumed to convert to a small ultracondensed and presumably dead mitochondrion (this process is called 'mitoptosis'). Then the dead mitochondrion is engulfed by an autophagosome. Sometimes, an ultracondensed mitoplast co-exists with a normal mitoplast, both of them being surrounded by a common outer mitochondrial membrane. During apoptosis, massive thread-grain transition is observed which, according to Youle et al. (S. Frank et al., Dev Cell 1: 515, 2002), is mediated by a dynamin-related protein and represents an obligatory step of the mitochondria-mediated apoptosis. We found that there is a lag phase between addition of an apoptogenic agent and the thread-grain transition. When started, the transition occurs very fast. It is also found that this event precedes complete de-energization of mitochondria and cytochrome c release to cytosol. When formed, small mitochondria migrate to (and in certain rare cases even into) the nucleus. It is suggested that small mitochondria may serve as a transportable form of organelles ('cargo boats' transporting some apoptotic proteins to their nuclear targets).


Assuntos
Apoptose , Mitocôndrias/fisiologia , Animais , Citocromos c/metabolismo , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA