Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Rep ; 14(1): 2352, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287067

RESUMO

Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.


Assuntos
Diabetes Mellitus , Fator A de Crescimento do Endotélio Vascular , Humanos , Coelhos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Neovascularização Fisiológica , Isquemia/patologia , Diabetes Mellitus/patologia , Alginatos/uso terapêutico , Membro Posterior/irrigação sanguínea
2.
Acta Biomater ; 167: 425-435, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321528

RESUMO

Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.


Assuntos
Hiperlipidemias , Doenças Vasculares Periféricas , Coelhos , Camundongos , Animais , Sindecana-4/farmacologia , Sindecana-4/uso terapêutico , Fator 2 de Crescimento de Fibroblastos , Neovascularização Fisiológica , Isquemia/terapia , Membro Posterior/irrigação sanguínea , Modelos Animais de Doenças
3.
Liver Int ; 43(8): 1714-1728, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37057737

RESUMO

BACKGROUND AND AIMS: The molecular mechanisms driving non-alcoholic fatty liver disease (NAFLD) are poorly understood; however, microRNAs might play a key role in these processes. We hypothesize that let-7d-5p could contribute to the pathophysiology of NAFLD and serve as a potential diagnostic biomarker. METHODS: We evaluated let-7d-5p levels and its targets in liver biopsies from a cross-sectional study including patients with NAFLD and healthy donors, and from a mouse model of NAFLD. Moreover, the induction of let-7d-5p expression by fatty acids was evaluated in vitro. Further, we overexpressed let-7d-5p in vitro to corroborate the results observed in vivo. Circulating let-7d-5p and its potential as a NAFLD biomarker was determined in isolated extracellular vesicles from human plasma by RT-qPCR. RESULTS: Our results demonstrate that hepatic let-7d-5p was significantly up-regulated in patients with steatosis, and this increase correlated with obesity and a decreased expression of AKT serine/threonine kinase (AKT), insulin-like growth factor 1 (IGF1), IGF-I receptor (IGF1R) and insulin receptor (INSR). These alterations were corroborated in a NAFLD mouse model. In vitro, fatty acids increased let-7d-5p expression, and its overexpression decreased AKT, IGF-IR and IR protein expression. Furthermore, let-7d-5p hindered AKT phosphorylation in vitro after insulin stimulation. Finally, circulating let-7d-5p significantly decreased in steatosis patients and receiver operating characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker. CONCLUSIONS: Our results highlight the emerging role of let-7d-5p as a potential therapeutic target for NAFLD since its overexpression impairs hepatic insulin signalling, and also, as a novel non-invasive biomarker for NAFLD diagnosis.


Assuntos
Resistência à Insulina , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Biomarcadores , Estudos Transversais , Ácidos Graxos , Insulina , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Proto-Oncogênicas c-akt
4.
STAR Protoc ; 4(1): 102103, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853695

RESUMO

Human mesenchymal stem cells (hMSCs) are an appealing cell type for therapeutic applications but remain limited by poor efficacy in clinical trials. Here, we describe a conditioning technique that enhances the vascular regenerative properties of hMSCs and increases their expression of endothelial cell and pericyte markers. We also describe an alginate gel encapsulation protocol for delivering the conditioned cells. For complete details on the use and execution of this protocol, please refer to Lee et al. (2021).1.


Assuntos
Células-Tronco Mesenquimais , Humanos , Pericitos
5.
Nat Commun ; 13(1): 2497, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523773

RESUMO

Stem cell factor (SCF) is a cytokine that regulates hematopoiesis and other biological processes. While clinical treatments using SCF would be highly beneficial, these have been limited by toxicity related to mast cell activation. Transmembrane SCF (tmSCF) has differential activity from soluble SCF and has not been explored as a therapeutic agent. We created novel therapeutics using tmSCF embedded in proteoliposomes or lipid nanodiscs. Mouse models of anaphylaxis and ischemia revealed the tmSCF-based therapies did not activate mast cells and improved the revascularization in the ischemic hind limb. Proteoliposomal tmSCF preferentially acted on endothelial cells to induce angiogenesis while tmSCF nanodiscs had greater activity in inducing stem cell mobilization and recruitment to the site of injury. The type of lipid nanocarrier used altered the relative cellular uptake pathways and signaling in a cell type dependent manner. Overall, we found that tmSCF-based therapies can provide therapeutic benefits without off target effects.


Assuntos
Mastócitos , Fator de Células-Tronco , Animais , Células Endoteliais/metabolismo , Isquemia/metabolismo , Isquemia/terapia , Lipídeos , Mastócitos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fator de Células-Tronco/metabolismo
6.
Sci Rep ; 11(1): 9838, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972619

RESUMO

Physical activity has been consistently linked to decreased incidence of breast cancer and a substantial increase in the length of survival of patients with breast cancer. However, the understanding of how applied physical forces directly regulate breast cancer remains limited. We investigated the role of mechanical forces in altering the chemoresistance, proliferation and metastasis of breast cancer cells. We found that applied mechanical tension can dramatically alter gene expression in breast cancer cells, leading to decreased proliferation, increased resistance to chemotherapeutic treatment and enhanced adhesion to inflamed endothelial cells and collagen I under fluidic shear stress. A mechanistic analysis of the pathways involved in these effects supported a complex signaling network that included Abl1, Lck, Jak2 and PI3K to regulate pro-survival signaling and enhancement of adhesion under flow. Studies using mouse xenograft models demonstrated reduced proliferation of breast cancer cells with orthotopic implantation and increased metastasis to the skull when the cancer cells were treated with mechanical load. Using high throughput mechanobiological screens we identified pathways that could be targeted to reduce the effects of load on metastasis and found that the effects of mechanical load on bone colonization could be reduced through treatment with a PI3Kγ inhibitor.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Mama/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Estresse Mecânico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fenômenos Biomecânicos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microtomografia por Raio-X , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nanoscale ; 13(6): 3644-3653, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33538275

RESUMO

Recent advances in immunotherapy have highlighted a need for therapeutics that initiate immunogenic cell death in tumors to stimulate the body's immune response to cancer. This study examines whether laser-generated bubbles surrounding nanoparticles ("nanobubbles") induce an immunogenic response for cancer treatment. A single nanosecond laser pulse at 1064 nm generates micron-sized bubbles surrounding gold nanorods in the cytoplasm of breast cancer cells. Cell death occurred in cells treated with nanorods and irradiated, but not in cells with irradiation treatment alone. Cells treated with nanorods and irradiation had increased damage-associated molecular patterns (DAMPs), including increased expression of chaperone proteins human high mobility group box 1 (HMGB1), adenosine triphosphate (ATP), and heat shock protein 70 (HSP70). This enhanced expression of DAMPs led to the activation of dendritic cells. Overall, this treatment approach is a rapid and highly specific method to eradicate tumor cells with simultaneous immunogenic cell death signaling, showing potential as a combination strategy for immunotherapy.


Assuntos
Neoplasias da Mama , Proteína HMGB1 , Neoplasias da Mama/terapia , Calreticulina/metabolismo , Humanos , Morte Celular Imunogênica , Lasers
8.
Nat Biomed Eng ; 5(1): 89-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33483713

RESUMO

Using endogenous mesenchymal stem cells for treating myocardial infarction and other cardiovascular conditions typically results in poor efficacy, in part owing to the heterogeneity of the harvested cells and of the patient responses. Here, by means of high-throughput screening of the combinatorial space of mechanical-strain level and of the presence of particular kinase inhibitors, we show that human mesenchymal stem cells can be mechanically and pharmacologically conditioned to enhance vascular regeneration in vivo. Mesenchymal stem cells conditioned to increase the activation of signalling pathways mediated by Smad2/3 (mothers against decapentaplegic homolog 2/3) and YAP (Yes-associated protein) expressed markers that are associated with pericytes and endothelial cells, displayed increased angiogenic activity in vitro, and enhanced the formation of vasculature in mice after subcutaneous implantation and after implantation in ischaemic hindlimbs. These effects were mediated by the crosstalk of endothelial-growth-factor receptors, transforming-growth-factor-beta receptor type 1 and vascular-endothelial-growth-factor receptor 2. Mechanical and pharmacological conditioning can significantly enhance the regenerative properties of mesenchymal stem cells.


Assuntos
Fenômenos Biomecânicos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica/fisiologia , Regeneração/fisiologia , Adulto , Animais , Feminino , Humanos , Isquemia , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptores de Fatores de Crescimento/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Adulto Jovem
9.
J Vis Exp ; (148)2019 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-31205305

RESUMO

Peripheral vascular disease is a widespread clinical problem that affects millions of patients worldwide. A major consequence of peripheral vascular disease is the development of ischemia. In severe cases, patients can develop critical limb ischemia in which they experience constant pain and an increased risk of limb amputation. Current therapies for peripheral ischemia include bypass surgery or percutaneous interventions such as angioplasty with stenting or atherectomy to restore blood flow. However, these treatments often fail to the continued progression of vascular disease or restenosis or are contraindicated due to the overall poor health of the patient. A promising potential approach to treat peripheral ischemia involves the induction of therapeutic neovascularization to allow the patient to develop collateral vasculature. This newly formed network alleviates peripheral ischemia by restoring perfusion to the affected area. The most frequently employed preclinical model for peripheral ischemia utilizes the creation of hind limb ischemia in healthy rabbits through femoral artery ligation. In the past, however, there has been a strong disconnect between the success of preclinical studies and the failure of clinical trials regarding treatments for peripheral ischemia. Healthy animals typically have robust vascular regeneration in response to surgically induced ischemia, in contrast to the reduced vascularity and regeneration in patients with chronic peripheral ischemia. Here, we describe an optimized animal model for peripheral ischemia in rabbits that includes hyperlipidemia and diabetes. This model has reduced collateral formation and blood pressure recovery in comparison to a model with a higher cholesterol diet. Thus, the model may provide better correlation with human patients with compromised angiogenesis from the common co-morbidities that accompany peripheral vascular disease.


Assuntos
Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Membro Posterior/patologia , Hiperlipidemias/complicações , Isquemia/patologia , Neovascularização Patológica/patologia , Angioplastia , Animais , Artéria Femoral/cirurgia , Membro Posterior/irrigação sanguínea , Isquemia/etiologia , Masculino , Neovascularização Patológica/etiologia , Coelhos
10.
J Vasc Surg ; 67(6): 1908-1920.e1, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29273298

RESUMO

OBJECTIVE: Peripheral arterial disease can cause not only ischemia but also skeletal muscle damage. It has been known that macrophages (MPs) play an important role in coordinating muscle repair; however, phenotype transition of monocyte-MP in ischemic muscle has not been well defined. Hence, the purpose of this study was to examine the temporal recruitment of MPs and to explore their therapeutic effect on ischemic muscle regeneration. METHODS: Unilateral femoral artery excision was performed on C57BL/6 mice. Myeloid cells were isolated from the ischemic muscles, characterized using flow cytometry. Bone marrow-derived MPs were injected (2 × 106 cells) into the ischemic gastrocnemius muscle 24 hours after injury. Blood flow recovery was measured using laser speckle imaging. Functional outcome was evaluated by assessing the contractile force of ischemic muscles. Histologic analysis included quantification of myofiber size, collagen deposition, number of inflammatory and MyoD-expressing cells, and capillary density. RESULTS: Neutrophils and inflammatory monocytes-MPs were present at day 1 after injury. The mature MPs then remained elevated as the dominant population from day 5 to day 21 with the observation of regenerating fibers. Functional measurements revealed that the force production was significantly enhanced after treatment with proinflammatory M1 MPs (94.9% vs 77.9%; P < .05), and this was consistent with increased myofiber size, capillary- fiber ratio, and perfusion (78.6% vs 39.9%; P < .05). Moreover, the percentage of MyoD-expressing nuclei was significantly higher at day 4, indicating that M1 MPs may hasten muscle repair. Whereas early delivery of anti-inflammatory M2 MPs improved myofiber size, this was accompanied by persistent fibrosis suggesting ongoing tissue remodeling, and lower force production was observed. CONCLUSIONS: We demonstrated the dynamics of myeloid cells in skeletal muscle after ischemic insult, and the administration of exogenous M1 MPs in a temporally coordinated manner successfully improved angiogenesis and skeletal muscle regeneration. Our results suggested that cell therapy using MPs may be a promising adjunctive therapeutic approach for peripheral arterial disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Membro Posterior/irrigação sanguínea , Isquemia/terapia , Macrófagos/transplante , Músculo Esquelético/patologia , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Isquemia/patologia , Isquemia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Músculo Esquelético/fisiopatologia
11.
Adv Healthc Mater ; 6(22)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945009

RESUMO

Mesenchymal stem cells (MSCs) are an appealing potential therapy for vascular diseases; however, many challenges remain in their clinical translation. While the use of biochemical, pharmacological, and substrate-mediated treatments to condition MSCs has been subjected to intense investigation, there has been far less exploration of using these treatments in combination with applied mechanical force for conditioning MSCs toward vascular phenotypes. This review summarizes the current understanding of the use of applied mechanical forces to differentiate MSCs into vascular cells and enhance their therapeutic potential for cardiovascular disease. First recent work on the use of material-based mechanical cues for differentiation of MSCs into vascular and cardiovascular phenotypes is examined. Then a summary of the studies using mechanical stretch or shear stress in combination with biochemical treatments to enhance vascular phenotypes in MSCs is presented.


Assuntos
Sistema Cardiovascular/citologia , Sistema Cardiovascular/fisiopatologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Diferenciação Celular/fisiologia , Humanos , Resistência ao Cisalhamento/fisiologia , Estresse Mecânico , Engenharia Tecidual/métodos
12.
Tissue Eng Part A ; 23(21-22): 1251-1261, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28699397

RESUMO

Peripheral ischemia as a result of occlusive vascular disease is a widespread problem in patients older than the age of 65. Angiogenic therapies that can induce microvascular growth have great potential for providing a long-lasting solution for patients with ischemia and would provide an appealing alternative to surgical and percutaneous interventions. However, many angiogenic therapies have seen poor efficacy in clinical trials, suggesting that patients with long-term peripheral ischemia have considerable therapeutic resistance to angiogenic stimuli. Glioblastoma is one of the most angiogenic tumor types, inducing robust vessel growth in the area surrounding the tumor. One major angiogenic mechanism used by the tumor cells to induce blood vessel growth is the production of exosomes and other extracellular vesicles that can carry pro-angiogenic and immunomodulatory signals. Here, we explored whether the pro-angiogenic aspects of glioblastoma-derived exosomes could be harnessed to promote angiogenesis and healing in the context of peripheral ischemic disease. We demonstrate that the exosomes derived from glioblastoma markedly enhance endothelial cell proliferation and increase endothelial tubule formation in vitro. An analysis of the microRNA expression using next generation sequencing identified that exosomes contained a high concentration of miR-221. In addition, we found that glioblastoma exosomes contained significant amounts of the proteoglycans glypican-1 and syndecan-4, which can serve as co-receptors for angiogenic factors, including fibroblast growth factor-2 (FGF-2). In a hindlimb ischemia model in mice, we found that the exosomes promoted enhanced revascularization in comparison to control alginate gels and FGF-2 treatment alone. Taken together, our results support the fact that glioblastoma-derived exosomes have powerful effects in increasing revascularization in the context of peripheral ischemia.


Assuntos
Neoplasias Encefálicas/metabolismo , Exossomos/metabolismo , Glioblastoma/metabolismo , Isquemia/terapia , Neovascularização Fisiológica , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Exossomos/ultraestrutura , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Membro Posterior/irrigação sanguínea , Membro Posterior/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , RNA Neoplásico/metabolismo
13.
Acta Biomater ; 42: 56-65, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27381525

RESUMO

UNLABELLED: Non-healing ulcers are a common consequence of long-term diabetes and severe peripheral vascular disease. These non-healing wounds are a major source of morbidity in patients with diabetes and place a heavy financial burden on the healthcare system. Growth factor therapies are an attractive strategy for enhancing wound closure in non-healing wounds but have only achieved mixed results in clinical trials. Platelet derived growth factor-BB (PDGF-BB) is the only currently approved growth factor therapy for non-healing wounds. However, PDGF-BB therapy is not effective in many patients and requires high doses that increase the potential for side effects. In this work, we demonstrate that syndecan-4 delivered in a proteoliposomal formulation enhances PDGF-BB activity in diabetic wound healing. In particular, syndecan-4 proteoliposomes enhance the migration of keratinocytes derived from patients with diabetes. In addition, syndecan-4 proteoliposomes sensitize keratinocytes to PDGF-BB stimulation, enhancing the intracellular signaling response to PDGF-BB. We further demonstrated that co-therapy with syndecan-4 proteoliposomes enhanced wound closure in diabetic, hyperlipidemic ob/ob mice. Wounds treated with both syndecan-4 proteoliposomes and PDGF-BB had increased re-epithelization and angiogenesis in comparison to wounds treated with PDGF-BB alone. Moreover, the wounds treated with syndecan-4 proteoliposomes and PDGF-BB also had increased M2 macrophages and reduced M1 macrophages, suggesting syndecan-4 delivery induces immunomodulation within the healing wounds. Together our findings support that syndecan-4 proteoliposomes markedly improve PDGF-BB efficacy for wound healing and may be useful in enhancing treatments for non-healing wounds. STATEMENT OF SIGNIFICANCE: Non-healing wounds are major healthcare issue for patients with diabetes and peripheral vascular disease. Growth factor therapies have potential for healing chronic wounds but have not been effective for many patients. PDGF-BB is currently the only approved growth factor for enhancing wound healing. However, it has not seen widespread adoption due to limited efficacy and high cost. In this work, we have developed an enhancing agent that improves the activity of PDGF-BB in promoting wound healing in animals with diabetes. This co-therapy may be useful in improving the efficacy of PDGFBB and enhance its safety through lowering the dose of growth factor needed to improve wound healing.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Sindecana-4/uso terapêutico , Cicatrização/efeitos dos fármacos , Adulto , Animais , Becaplermina , Movimento Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Obesos , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo , Proteolipídeos/metabolismo , Proteínas Proto-Oncogênicas c-sis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sindecana-4/farmacologia
14.
Biomaterials ; 93: 71-82, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27082874

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating and painful cancers. It is often highly resistant to therapy owing to inherent chemoresistance and the desmoplastic response that creates a barrier of fibrous tissue preventing transport of chemotherapeutics into the tumor. The growth of the tumor in pancreatic cancer often leads to invasion of other organs and partial or complete biliary obstruction, inducing intense pain for patients and necessitating tumor resection or repeated stenting. Here, we have developed a delivery device to provide enhanced palliative therapy for pancreatic cancer patients by providing high concentrations of chemotherapeutic compounds locally at the tumor site. This treatment could reduce the need for repeated procedures in advanced PDAC patients to debulk the tumor mass or stent the obstructed bile duct. To facilitate clinical translation, we created the device out of currently approved materials and drugs. We engineered an implantable poly(lactic-co-glycolic)-based biodegradable device that is able to linearly release high doses of chemotherapeutic drugs for up to 60 days. We created five patient-derived PDAC cell lines and tested their sensitivity to approved chemotherapeutic compounds. These in vitro experiments showed that paclitaxel was the most effective single agent across all cell lines. We compared the efficacy of systemic and local paclitaxel therapy on the patient-derived cell lines in an orthotopic xenograft model in mice (PDX). In this model, we found up to a 12-fold increase in suppression of tumor growth by local therapy in comparison to systemic administration and reduce retention into off-target organs. Herein, we highlight the efficacy of a local therapeutic approach to overcome PDAC chemoresistance and reduce the need for repeated interventions and biliary obstruction by preventing local tumor growth. Our results underscore the urgent need for an implantable drug-eluting platform to deliver cytotoxic agents directly within the tumor mass as a novel therapeutic strategy for patients with pancreatic cancer.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Neoplasias Pancreáticas/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Camundongos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biomaterials ; 94: 45-56, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27101205

RESUMO

Therapeutic angiogenesis is a highly appealing concept for treating tissues that become ischemic due to vascular disease. A major barrier to the clinical translation of angiogenic therapies is that the patients that are in the greatest need of these treatments often have long term disease states and co-morbidities, such as diabetes and obesity, that make them resistant to angiogenic stimuli. In this study, we identified that human patients with type 2 diabetes have reduced levels of glypican-1 in the blood vessels of their skin. The lack of this key co-receptor in the tissue may make the application of exogenous angiogenic growth factors or cell therapies ineffective. We created a novel therapeutic enhancer for growth factor activity consisting of glypican-1 delivered in a nanoliposomal carrier (a "glypisome"). Here, we demonstrate that glypisomes enhance FGF-2 mediated endothelial cell proliferation, migration and tube formation. In addition, glypisomes enhance FGF-2 trafficking by increasing both uptake and endosomal processing. We encapsulated FGF-2 or FGF-2 with glypisomes in alginate beads and used these to deliver localized growth factor therapy in a murine hind limb ischemia model. Co-delivery of glypisomes with FGF-2 markedly increased the recovery of perfusion and vessel formation in ischemic hind limbs of wild type and diabetic mice in comparison to mice treated with FGF-2 alone. Together, our findings support that glypisomes are effective means for enhancing growth factor activity and may improve the response to local angiogenic growth factor therapies for ischemia.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Glipicanas/metabolismo , Nanopartículas/química , Neovascularização Fisiológica/efeitos dos fármacos , Alginatos/química , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Sistemas de Liberação de Medicamentos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Ácido Glucurônico/química , Células HEK293 , Células HeLa , Ácidos Hexurônicos/química , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/patologia , Isquemia/terapia , Cinética , Lipossomos , Camundongos Obesos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/farmacologia
16.
Adv Healthc Mater ; 5(9): 1008-13, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26891081

RESUMO

Delivering syndecan-4 with FGF-2 improves the effectiveness of FGF-2 therapy for ischemia in the diabetic disease state. The syndecan-4 proteoliposomes significantly enhance in vitro tubule formation as well as blood perfusion and vessel density in the ischemic hind limbs of diseased ob/ob mice. Syndecan-4 therapy also induces a marked immunomodulation in the tissues, increasing the polarization of macrophages toward the M2 phenotype.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Membro Posterior/irrigação sanguínea , Isquemia/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Sindecana-4/farmacologia , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Membro Posterior/metabolismo , Membro Posterior/patologia , Isquemia/metabolismo , Isquemia/patologia , Lipossomos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Obesos
17.
Sci Rep ; 6: 19854, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26816215

RESUMO

The kinetics of receptor-mediated cell adhesion to extracellular matrix and adherent cell monolayers plays a key role in many physiological and pathological processes including cancer metastasis. Within this process the presence of fluidic shear forces is a key regulator of binding equilibrium and kinetics of cell adhesion. Current techniques to examine the kinetics of cell adhesion are either performed in the absence of flow or are low throughput, limiting their application to pharmacological compound screening or the high throughput investigation of biological mechanisms. We developed a high throughput flow device that applies flow in a multi-well format and interfaced this system with electric cell-substrate impedance sensing (ECIS) system to allow label free detection of cell adhesion. We demonstrate that this combined system is capable of making real time measurements of cancer cell adhesion to extracellular matrix and immobilized platelets. In addition, we examined the dependence of the kinetics of binding of cancer cells on the level of shear stress and in the presence of small molecule inhibitors to adhesion-related pathways. This versatile system is broadly adaptable to the high throughput study of cell adhesion kinetics for many applications including drug screening and the investigation of the mechanisms of cancer metastasis.


Assuntos
Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Resistência ao Cisalhamento , Velocidade do Fluxo Sanguíneo , Adesão Celular , Linhagem Celular Tumoral , Matriz Extracelular/patologia , Humanos , Cinética , Metástase Neoplásica , Neoplasias/patologia
18.
ACS Nano ; 9(4): 3436-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25844518

RESUMO

Peripheral vascular disease (PVD) is one of the most prevalent vascular diseases in the U.S. afflicting an estimated 8 million people. Obstruction of peripheral arteries leads to insufficient nutrients and oxygen supply to extremities, which, if not treated properly, can potentially give rise to a severe condition called critical limb ischemia (CLI). CLI is associated with extremely high morbidities and mortalities. Conventional treatments such as angioplasty, atherectomy, stent implantation and bypass surgery have achieved some success in treating localized macrovascular disease but are limited by their invasiveness. An emerging alternative is the use of growth factor (delivered as genes or proteins) and cell therapy for PVD treatment. By delivering growth factors or cells to the ischemic tissue, one can stimulate the regeneration of functional vasculature network locally, re-perfuse the ischemic tissue, and thus salvage the limb. Here we review recent advance in nanomaterials, and discuss how their application can improve and facilitate growth factor or cell therapies. Specifically, nanoparticles (NPs) can serve as drug carrier and target to ischemic tissues and achieve localized and sustained release of pro-angiogenic proteins. As nonviral vectors, NPs can greatly enhance the transfection of target cells with pro-angiogenic genes with relatively fewer safety concern. Further, NPs may also be used in combination with cell therapy to enhance cell retention, cell survival and secretion of angiogenic factors. Lastly, nano/micro fibrous vascular grafts can be engineered to better mimic the structure and composition of native vessels, and hopefully overcome many complications/limitations associated with conventional synthetic grafts.


Assuntos
Extremidades/irrigação sanguínea , Isquemia/terapia , Nanomedicina/métodos , Doenças Vasculares Periféricas/terapia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Isquemia/genética , Isquemia/patologia , Doenças Vasculares Periféricas/genética , Doenças Vasculares Periféricas/patologia , Engenharia Tecidual
19.
Lab Chip ; 13(23): 4573-82, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24096612

RESUMO

While many studies have examined the effects mechanical forces on vSMCs, there is a limited understanding of how the different arterial strain waveforms that occur in disease and different vascular beds alter vSMC mechanotransduction and phenotype. Here, we present a novel system for applying complex, time-varying strain waveforms to cultured cells and use this system to understand how these waveforms can alter vSMC phenotype and signaling. We have developed a highly adaptable cell culture system that allows the application of mechanical strain to cells in culture and can reproduce the complex dynamic mechanical environment experienced by arterial cells in the body. Using this system, we examined whether the type of applied strain waveform altered phenotypic modulation of vSMCs by mechanical forces. Cells exposed to the brachial waveform had increased phosphorylation of AKT, EGR-1, c-Fos expression and cytoskeletal remodeling in comparison to cells treated with the aortic waveform. In addition, vSMCs exposed to physiological waveforms had adopted a more differentiated phenotype in comparison to those treated with static or sinusoidal cyclic strain, with increased expression of vSMC markers desmin, calponin and SM-22 as well as increased expression of regulatory miRNAs including miR-143, -145 and -221. Taken together, our studies demonstrate the development of a novel system for applying complex, time-varying mechanical forces to cells in culture. In addition, we have shown that physiological strain waveforms have powerful effects on vSMC phenotype.


Assuntos
Técnicas de Cultura de Células/instrumentação , Miócitos de Músculo Liso/citologia , Estresse Mecânico , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Desmina/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Humanos , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Miócitos de Músculo Liso/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Calponinas
20.
J Am Coll Cardiol ; 59(17): 1551-60, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22516446

RESUMO

OBJECTIVES: The purpose of this study was to examine the role of heparanase in controlling thrombosis following vascular injury or endovascular stenting. BACKGROUND: The use of endovascular stents are a common clinical intervention for the treatment of arteries occluded due to vascular disease. Both heparin and heparan sulfate are known to be potent inhibitors of thrombosis. Heparanase is the major enzyme that degrades heparan sulfate in mammalian cells. This study examined the role of heparanase in controlling thrombosis following vascular injury and stent-induced flow disturbance. METHODS: This study used mice overexpressing human heparanase and examined the time to thrombosis using a laser-induced arterial thrombosis model in combination with vascular injury. An ex vivo system was used to examine the formation of thrombus to stent-induced flow disturbance. RESULTS: In the absence of vascular injury, wild type and heparanase overexpressing (HPA Tg) mice had similar times to thrombosis in a laser-induced arterial thrombosis model. However, in the presence of vascular injury, the time to thrombosis was dramatically reduced in HPA Tg mice. An ex vivo system was used to flow blood from wild type and HPA Tg mice over stents and stented arterial segments from both animal types. These studies demonstrate markedly increased thromboses on stents with blood isolated from HPA Tg mice in comparison to blood from wild type animals. We found that blood from HPA Tg animals had markedly increased thrombosis when applied to stented arterial segments from either wild type or HPA Tg mice. CONCLUSIONS: Taken together, this study's results indicate that heparanase is a powerful mediator of thrombosis in the context of vascular injury and stent-induced flow disturbance.


Assuntos
Angioplastia com Balão/efeitos adversos , Trombose Coronária/enzimologia , Glucuronidase/metabolismo , Stents/efeitos adversos , Lesões do Sistema Vascular/enzimologia , Animais , Arteriopatias Oclusivas/enzimologia , Arteriopatias Oclusivas/etiologia , Arteriopatias Oclusivas/patologia , Biomarcadores/análise , Biomarcadores/metabolismo , Biópsia por Agulha , Trombose Coronária/etiologia , Trombose Coronária/patologia , Modelos Animais de Doenças , Endotélio Vascular/lesões , Endotélio Vascular/patologia , Glucuronidase/análise , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Análise Multivariada , Distribuição Aleatória , Medição de Risco , Sensibilidade e Especificidade , Lesões do Sistema Vascular/etiologia , Lesões do Sistema Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA