Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biogerontology ; 24(2): 163-181, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36626035

RESUMO

Volume hyposensitivity resulting from impaired sympathetic detrusor relaxation during bladder filling contributes to detrusor underactivity (DU) associated with aging. Detrusor tension regulation provides an adaptive sensory input of bladder volume to the brainstem and is challenged by physiological stressors superimposed upon biological aging. We recently showed that HCN channels have a stabilizing role in detrusor sympathetic relaxation. While mature mice maintain homeostasis in the face of stressors, old mice are not always capable. In old mice, there is a dichotomous phenotype, in which resilient mice adapt and maintain homeostasis, while non-resilient mice fail to maintain physiologic homeostasis. In this DU model, we used cystometry as a stressor to categorize mice as old-responders (old-R, develop a filling/voiding cycle) or old-non-responders (old-NR, fail to develop a filling/voiding cycle; fluctuating high pressures and continuous leaking), while also assessing functional and molecular differences. Lamotrigine (HCN activator)-induced bladder relaxation is diminished in old-NR mice following HCN-blockade. Relaxation responses to NS 1619 were reduced in old-NR mice, with the effect lost following HCN-blockade. However, RNA-sequencing revealed no differences in HCN gene expression and electrophysiology studies showed similar percentage of detrusor myocytes expressing HCN (Ih) current between old-R and old-NR mice. Our murine model of DU further defines a role for HCN, with failure of adaptive recalibration of HCN participation and intensity of HCN-mediated stabilization, while genomic studies show upregulated myofibroblast and fibrosis pathways and downregulated neurotransmitter-degradation pathways in old-NR mice. Thus, the DU phenotype is multifactorial and represents the accumulation of age-associated loss in homeostatic mechanisms.


Assuntos
Bexiga Inativa , Camundongos , Animais , Bexiga Urinária , Envelhecimento/fisiologia
2.
Neurourol Urodyn ; 38(8): 2121-2129, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31452236

RESUMO

AIMS: The prevalence of urinary dysfunction increases with age, yet therapies are often suboptimal. Incomplete understanding of the linkages between system, organ, and tissue domains across lifespan remains a knowledge gap. If tissue-level changes drive the aging bladder phenotype, parallel changes should be observed across these domains. In contrast, a lack of inter-domain correlation across age groups would support the hypothesis that urinary performance is a measure of the physiologic reserve, dependent on centrally-mediated adaptive mechanisms in the aging system. METHODS: Male and female mice across four age groups underwent sequential voiding spot assays, pressure/flow cystometry, bladder strip tension studies, histology, and quantitative PCR analyses. The primary objective of this study was to test the impact of age on the cortical, autonomic, tissue functional and structural, and molecular domains, and identify inter-domain correlations among variables showing significant changes with age within these domains. RESULTS: Behavior revealed diminished peripheral voiding and spot size in aged females. Cystometry demonstrated increased postvoid residual and loss of volume sensitivity, but the preservation of voiding contraction power, with almost half of oldest-old mice failing under cystometric stress. Strip studies revealed no significant differences in adrenergic, cholinergic, or EFS sensitivity. Histology showed increased detrusor and lamina propria thickness, without a change in collagen/muscle ratio. Adrb2 gene expression decreased with age. No consistent inter-domain correlations were found across age groups. CONCLUSIONS: Our findings are consistent with a model in which centrally-mediated adaptive failures to aging stressors are more influential over the aging bladder phenotype than local tissue changes.


Assuntos
Envelhecimento/fisiologia , Contração Muscular/fisiologia , Bexiga Urinária/fisiopatologia , Micção/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Estimulação Elétrica , Feminino , Isoproterenol/farmacologia , Masculino , Camundongos , Mucosa/patologia , Miografia , Fenótipo , Receptor Muscarínico M3/genética , Receptores Adrenérgicos beta 2/genética , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA