Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(14): e0062422, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35867560

RESUMO

HIV-1 persistence in different cell types presents the main obstacle to an HIV-1 cure. We have previously shown that the renal epithelium is a site of HIV-1 infection and that the kidney represents a separate viral compartment from blood. Whether renal cells can harbor latent virus that can be reactivated upon treatment with latency reversing agents (LRAs) is unknown. To address this question, we developed an in vitro HIV-1 latency model in renal tubule epithelial (RTE) cells using a dual color HIV-1 reporter virus, R7/E-/GFP/EF1a-mCherry (R7GEmC), and evaluated the effect of LRAs, both as single agents and in combination, on viral reactivation. Our data show that HIV-1 can establish latency in RTE cells early postinfection. While the pool of latently infected cells expanded overtime, the percentage of productively infected cells declined. Following LRA treatment only a small fraction of latently infected cells, both T cells and RTE cells, could be reactivated, and the drug combinations more effective in reactivating HIV transcription in RTE cells differed from those more active in T cells. Our study demonstrates that HIV can establish latency in RTE cells and that current LRAs are only marginally effective in inducing HIV-1 reactivation. This suggests that further study of LRA dynamics in non-T cells may be warranted to assess the suitability of LRAs as a sterilizing cure strategy. IMPORTANCE Anti-retroviral therapy (ART) has dramatically reduced HIV-related morbidity and mortality. Despite this success, a number of challenges remain, including the long-term persistence of multiple, clinically latent viral reservoirs capable of reactivation in the absence of ART. As efforts proceed toward HIV eradication or functional cure, further understanding of the dynamics of HIV-1 replication, establishment of latency and mechanisms of reactivation in reservoirs harboring the virus throughout the body is necessary. HIV-1 can infect renal epithelial cells and the expression of viral genes in those cells contributes to the development of HIV associated nephropathy (HIVAN) in untreated individuals. The significance of our work is in developing the first model of HIV-1 latency in renal epithelial cells. This model enhances our understanding of HIV-1 latency and persistence in the kidney and can be used to screen candidate latency reversing agents.


Assuntos
Células Epiteliais , Infecções por HIV , Rim , Ativação Viral , Latência Viral , Linfócitos T CD4-Positivos , Células Cultivadas , Células Epiteliais/virologia , HIV-1 , Humanos , Rim/citologia , Rim/virologia
2.
BMC Cancer ; 19(1): 1039, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684899

RESUMO

BACKGROUND: Understanding mechanisms underlying specific chemotherapeutic responses in subtypes of cancer may improve identification of treatment strategies most likely to benefit particular patients. For example, triple-negative breast cancer (TNBC) patients have variable response to the chemotherapeutic agent cisplatin. Understanding the basis of treatment response in cancer subtypes will lead to more informed decisions about selection of treatment strategies. METHODS: In this study we used an integrative functional genomics approach to investigate the molecular mechanisms underlying known cisplatin-response differences among subtypes of TNBC. To identify changes in gene expression that could explain mechanisms of resistance, we examined 102 evolutionarily conserved cisplatin-associated genes, evaluating their differential expression in the cisplatin-sensitive, basal-like 1 (BL1) and basal-like 2 (BL2) subtypes, and the two cisplatin-resistant, luminal androgen receptor (LAR) and mesenchymal (M) subtypes of TNBC. RESULTS: We found 20 genes that were differentially expressed in at least one subtype. Fifteen of the 20 genes are associated with cell death and are distributed among all TNBC subtypes. The less cisplatin-responsive LAR and M TNBC subtypes show different regulation of 13 genes compared to the more sensitive BL1 and BL2 subtypes. These 13 genes identify a variety of cisplatin-resistance mechanisms including increased transport and detoxification of cisplatin, and mis-regulation of the epithelial to mesenchymal transition. CONCLUSIONS: We identified gene signatures in resistant TNBC subtypes indicative of mechanisms of cisplatin. Our results indicate that response to cisplatin in TNBC has a complex foundation based on impact of treatment on distinct cellular pathways. We find that examination of expression data in the context of heterogeneous data such as drug-gene interactions leads to a better understanding of mechanisms at work in cancer therapy response.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Genômica/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Evolução Biológica , Linhagem Celular Tumoral , Sequência Conservada , Transição Epitelial-Mesenquimal/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Ratos , Receptores Androgênicos/metabolismo
3.
PLoS One ; 14(4): e0214523, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30978202

RESUMO

Understanding the biological mechanisms behind aging, lifespan and healthspan is becoming increasingly important as the proportion of the world's population over the age of 65 grows, along with the cost and complexity of their care. BigData oriented approaches and analysis methods enable current and future bio-gerontologists to synthesize, distill and interpret vast, heterogeneous data from functional genomics studies of aging. GeneWeaver is an analysis system for integration of data that allows investigators to store, search, and analyze immense amounts of data including user-submitted experimental data, data from primary publications, and data in other databases. Aging related genome-wide gene sets from primary publications were curated into this system in concert with data from other model-organism and aging-specific databases, and applied to several questions in genrontology using. For example, we identified Cd63 as a frequently represented gene among aging-related genome-wide results. To evaluate the role of Cd63 in aging, we performed RNAi knockdown of the C. elegans ortholog, tsp-7, demonstrating that this manipulation is capable of extending lifespan. The tools in GeneWeaver enable aging researchers to make new discoveries into the associations between the genes, normal biological processes, and diseases that affect aging, healthspan, and lifespan.


Assuntos
Envelhecimento/genética , Análise de Dados , Genômica , Interferência de RNA , Software , Idoso , Algoritmos , Animais , Caenorhabditis elegans , Senescência Celular , Cognição , Disfunção Cognitiva , Bases de Dados Genéticas , Demência/fisiopatologia , Geriatria , Humanos , Longevidade , Obesidade , Fenótipo , Tetraspanina 30/metabolismo
4.
Psychopharmacology (Berl) ; 236(6): 1817-1828, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30645681

RESUMO

RATIONALE: Sporadic reports of alcohol consumption being linked to menstrual cycle phase highlight the need to consider hormonally characterized menstrual cycle phase in understanding the sex-specific effects of risk for alcohol drinking in women. OBJECTIVES: We investigated the association between menstrual cycle phase, characterized by circulating progesterone and menses, with accurate daily alcohol intakes in rhesus monkeys, and the contribution of progesterone derived neuroactive steroids to cycle-related alcohol drinking. METHODS: Menses (daily) and progesterone (2-3×/week) were obtained in female monkeys (n = 8, 5 ethanol, 3 control) for 12-18 months. Ethanol monkeys were then induced to drink ethanol (4% w/v; 3 months) and given 22 h/day access to ethanol and water for approximately 1 year. In selected cycles, a panel of neuroactive steroids were assayed during follicular and luteal phases from pre-ethanol and ethanol exposure. RESULTS: There were minimal to no effects of ethanol on menstrual cycle length, progesterone levels, and follicular or luteal phase length. The monkeys drank more ethanol during the luteal phase, compared to the follicular phase, and ethanol intake was highest in the late luteal phase when progesterone declines rapidly. Two neuroactive steroids were higher during the luteal phase versus the follicular phase, and several neuroactive steroids were higher in the pre- vs. post-ethanol drinking menstrual cycles. CONCLUSIONS: This is the first study to show that normal menstrual cycle fluctuations in progesterone, particularly during the late luteal phase, can modulate ethanol intake. Two of 11 neuroactive steroids were selectively associated with the effect of cycle progesterone on ethanol drinking, suggesting possible links to CNS mechanisms of ethanol intake control.


Assuntos
Consumo de Bebidas Alcoólicas/sangue , Etanol/administração & dosagem , Fase Luteal/sangue , Fase Luteal/efeitos dos fármacos , Progesterona/sangue , Consumo de Bebidas Alcoólicas/psicologia , Animais , Estradiol/sangue , Feminino , Humanos , Macaca mulatta , Neurotransmissores/sangue
5.
Sci Rep ; 8(1): 9049, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899538

RESUMO

Cystine-stabilized peptides have great utility as they naturally block ion channels, inhibit acetylcholine receptors, or inactivate microbes. However, only a tiny fraction of these peptides has been characterized. Exploration for novel peptides most efficiently starts with the identification of candidates from genome sequence data. Unfortunately, though cystine-stabilized peptides have shared structures, they have low DNA sequence similarity, restricting the utility of BLAST and even more powerful sequence alignment-based annotation algorithms, such as PSI-BLAST and HMMER. In contrast, a supervised machine learning approach may improve discovery and function assignment of these peptides. To this end, we employed our previously described m-NGSG algorithm, which utilizes hidden signatures embedded in peptide primary sequences that define and categorize structural or functional classes of peptides. From the generalized m-NGSG framework, we derived five specific models that categorize cystine-stabilized peptide sequences into specific functional classes. When compared with PSI-BLAST, HMMER and existing function-specific models, our novel approach (named CSPred) consistently demonstrates superior performance in discovery and function-assignment. We also report an interactive version of CSPred, available through download ( https://bitbucket.org/sm_islam/cystine-stabilized-proteins/src ) or web interface (watson.ecs.baylor.edu/cspred), for the discovery of cystine-stabilized peptides of specific function from genomic datasets and for genome annotation. We fully describe, in the Availability section following the Discussion, the quick and simple usage of the CsPred website to automatically deliver function assignments for batch submissions of peptide sequences.


Assuntos
Algoritmos , Biologia Computacional/métodos , Cistina/química , Peptídeos/química , Sequência de Aminoácidos , Cistina/genética , Internet , Peptídeos/classificação , Peptídeos/genética , Reprodutibilidade dos Testes , Aprendizado de Máquina Supervisionado
6.
Behav Brain Res ; 320: 356-364, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27832980

RESUMO

Alcoholism is a disorder categorized by significant impairment that is directly related to persistent and extreme use of alcohol. The effects of alcoholism on c-Myc protein expression in the brain have been scarcely studied. This is the first study to investigate the role different characteristics of alcoholism have on c-Myc protein in the brain. We analyzed c-Myc protein in the hypothalamus and amygdala from five different animal models of alcohol abuse. c-Myc protein was increased following acute ethanol exposure in a mouse knockout model and following chronic ethanol consumption in vervet monkeys. We also observed increases in c-Myc protein exposure in animals that are genetically predisposed to alcohol and methamphetamine abuse. Lastly, c-Myc protein was increased in animals that were acutely exposed to methamphetamine when compared to control treated animals. These results suggest that in substance abuse c-Myc plays an important role in the brain's response.


Assuntos
Alcoolismo/patologia , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Alcoolismo/genética , Animais , Encéfalo/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Chlorocebus aethiops , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Metanfetamina/farmacologia , Camundongos , Camundongos Knockout , Receptores de Glutamato Metabotrópico/deficiência , Receptores de Glutamato Metabotrópico/genética
7.
Mutagenesis ; 31(5): 553-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27056945

RESUMO

Alcohol is a human carcinogen. A causal link has been established between alcohol drinking and cancers of the upper aerodigestive tract, colon, liver and breast. Despite this established association, the underlying mechanisms of alcohol-induced carcinogenesis remain unclear. Various mechanisms may come into play depending on the type of cancer; however, convincing evidence supports the concept that ethanol's major metabolite acetaldehyde may play a major role. Acetaldehyde can react with DNA forming adducts which can serve as biomarkers of carcinogen exposure and potentially of cancer risk. The major DNA adduct formed from this reaction is N (2)-ethylidenedeoxyguanosine, which can be quantified as its reduced form N (2)-ethyl-dG by LC-ESI-MS/MS. To investigate the potential use of N (2)-ethyl-dG as a biomarker of alcohol-induced DNA damage, we quantified this adduct in DNA from the oral, oesophageal and mammary gland tissues from rhesus monkeys exposed to alcohol drinking over their lifetimes and compared it to controls. N (2)-Ethyl-dG levels were significantly higher in the oral mucosa DNA of the exposed animals. Levels of the DNA adduct measured in the oesophageal mucosa of exposed animals were not significantly different from controls. A correlation between the levels measured in the oral and oesophageal DNA, however, was observed, suggesting a common source of formation of the DNA adducts. N (2) -Ethyl-dG was measured in mammary gland DNA from a small cohort of female animals, but no difference was observed between exposed animals and controls. These results support the hypothesis that acetaldehyde induces DNA damage in the oral mucosa of alcohol-exposed animals and that it may play role in the alcohol-induced carcinogenic process. The decrease of N (2)-ethyl-dG levels in exposed tissues further removed from the mouth also suggests a role of alcohol metabolism in the oral cavity, which may be considered separately from ethanol liver metabolism in the investigation of ethanol-related cancer risk.


Assuntos
Acetaldeído/toxicidade , Consumo de Bebidas Alcoólicas/efeitos adversos , Adutos de DNA/análise , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análise , Mucosa Bucal/efeitos dos fármacos , Acetaldeído/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Dano ao DNA , Mucosa Esofágica/química , Mucosa Esofágica/efeitos dos fármacos , Feminino , Macaca mulatta , Masculino , Glândulas Mamárias Animais/química , Glândulas Mamárias Animais/efeitos dos fármacos , Mucosa Bucal/química , Espectrometria de Massas em Tandem
8.
BMC Bioinformatics ; 16: 210, 2015 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26142484

RESUMO

BACKGROUND: Numerous organisms have evolved a wide range of toxic peptides for self-defense and predation. Their effective interstitial and macro-environmental use requires energetic and structural stability. One successful group of these peptides includes a tri-disulfide domain arrangement that offers toxicity and high stability. Sequential tri-disulfide connectivity variants create highly compact disulfide folds capable of withstanding a variety of environmental stresses. Their combination of toxicity and stability make these peptides remarkably valuable for their potential as bio-insecticides, antimicrobial peptides and peptide drug candidates. However, the wide sequence variation, sources and modalities of group members impose serious limitations on our ability to rapidly identify potential members. As a result, there is a need for automated high-throughput member classification approaches that leverage their demonstrated tertiary and functional homology. RESULTS: We developed an SVM-based model to predict sequential tri-disulfide peptide (STP) toxins from peptide sequences. One optimized model, called PredSTP, predicted STPs from training set with sensitivity, specificity, precision, accuracy and a Matthews correlation coefficient of 94.86%, 94.11%, 84.31%, 94.30% and 0.86, respectively, using 200 fold cross validation. The same model outperforms existing prediction approaches in three independent out of sample testsets derived from PDB. CONCLUSION: PredSTP can accurately identify a wide range of cystine stabilized peptide toxins directly from sequences in a species-agnostic fashion. The ability to rapidly filter sequences for potential bioactive peptides can greatly compress the time between peptide identification and testing structural and functional properties for possible antimicrobial and insecticidal candidates. A web interface is freely available to predict STP toxins from http://crick.ecs.baylor.edu/.


Assuntos
Algoritmos , Cistina/química , Dissulfetos/química , Modelos Estatísticos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Máquina de Vetores de Suporte , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular
9.
Leuk Res ; 26(11): 1017-25, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12363471

RESUMO

K-562 cells were cultured in HL-60 cell growth-conditioned medium (GCM) for up to 96h. Myeloperoxidase (MPO) mRNA was transiently detected by reverse transcription-polymerase chain reaction (RT-PCR) techniques at 12, 24, and 48h. The de novo expression of MPO protein was subsequently detectable by intracellular flow cytometry at 24, 48, 72 and 96h. Immunogold staining and cytochemical analysis demonstrated granularly-sequestered MPO in approximately 40% of HL-60 GCM-cultured cells after 48h of culture. The sequential detection of MPO mRNA and MPO biosynthesis is considered an indicator of serial maturation evocative of myeloblastic cells, and suggest that K-562 cells maintain the ability to differentiate along this lineage.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Células HL-60/fisiologia , Células K562/efeitos dos fármacos , Peroxidase/biossíntese , Peroxidase/genética , Diferenciação Celular , Linhagem da Célula , Primers do DNA/química , Citometria de Fluxo , Humanos , Células K562/enzimologia , Microscopia Eletrônica , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA