Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 7(3): 634-646, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28255356

RESUMO

MicroRNAs (miRNAs) are small, noncoding RNAs that post-transcriptionally regulate gene expression and are recognized for their roles both as modulators of disease progression and as biomarkers of disease activity, including neurological diseases, cancer, and cardiovascular disease (CVD). Commonly, miRNA abundance is assessed using quantitative real-time PCR (qRT-PCR), however, qRT-PCR for miRNA can be labor intensive, time consuming, and may lack specificity for detection of mature versus precursor forms of miRNA. Here, we describe a novel double molecular beacon approach to miRNA assessment that can distinguish and quantify mature versus precursor forms of miRNA in a single assay, an essential feature for use of miRNAs as biomarkers for disease. Using this approach, we found that molecular beacons with DNA or combined locked nucleic acid (LNA)-DNA backbones can detect mature and precursor miRNAs (pre-miRNAs) of low (< 1 nM) abundance in vitro. The double molecular beacon assay was accurate in assessing miRNA abundance in a sample containing a mixed population of mature and precursor miRNAs. In contrast, qRT-PCR and the single molecular beacon assay overestimated miRNA abundance. Additionally, the double molecular beacon assay was less labor intensive than traditional qRT-PCR and had 10-25% increased specificity. Our data suggest that the double molecular beacon-based approach is more precise and specific than previous methods, and has the promise of being the standard for assessing miRNA levels in biological samples.


Assuntos
MicroRNAs/análise , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade
2.
Biochem Biophys Res Commun ; 393(4): 643-8, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20153722

RESUMO

Mechanical forces associated with blood flow play an important role in regulating vascular signaling and gene expression in endothelial cells (ECs). MicroRNAs (miRNAs) are a class of noncoding RNAs that posttranscriptionally regulate the expression of genes involved in diverse cell functions, including differentiation, growth, proliferation, and apoptosis. miRNAs are known to have an important role in modulating EC biology, but their expression and functions in cells subjected to shear stress conditions are unknown. We sought to determine the miRNA expression profile in human ECs subjected to unidirectional shear stress and define the role of miR-21 in shear stress-induced changes in EC function. TLDA array and qRT-PCR analysis performed on HUVECs exposed to prolonged unidirectional shear stress (USS, 24h, 15 dynes/cm(2)) identified 13 miRNAs whose expression was significantly upregulated (p<0.05). The miRNA with the greatest change was miR-21; it was increased 5.2-fold (p=0.002) in USS-treated versus control cells. Western analysis demonstrated that PTEN, a known target of miR-21, was downregulated in HUVECs exposed to USS or transfected with pre-miR-21. Importantly, HUVECs overexpressing miR-21 had decreased apoptosis and increased eNOS phosphorylation and nitric oxide (NO(*)) production. These data demonstrate that shear stress forces regulate the expression of miRNAs in ECs, and that miR-21 influences endothelial biology by decreasing apoptosis and activating the NO(*) pathway. These studies advance our understanding of the mechanisms by which shear stress forces modulate vascular homeostasis.


Assuntos
Apoptose , Endotélio Vascular/fisiologia , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Resistência ao Cisalhamento , Tirosina Quinase da Agamaglobulinemia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/enzimologia , Regulação Enzimológica da Expressão Gênica , Homeostase , Humanos , MicroRNAs/genética , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , PTEN Fosfo-Hidrolase/biossíntese , Fosforilação , Proteínas Tirosina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA