Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0276298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477475

RESUMO

OBJECTIVE: To evaluate efficacy of a novel adeno-associated virus (AAV) vector, AAV2/4-RS1, for retinal rescue in the retinoschisin knockout (Rs1-KO) mouse model of X-linked retinoschisis (XLRS). Brinzolamide (Azopt®), a carbonic anhydrase inhibitor, was tested for its ability to potentiate the effects of AAV2/4-RS1. METHODS: AAV2/4-RS1 with a cytomegalovirus (CMV) promoter (2x1012 viral genomes/mL) was delivered to Rs1-KO mice via intravitreal (N = 5; 1µL) or subretinal (N = 21; 2µL) injections at postnatal day 60-90. Eleven mice treated with subretinal therapy also received topical Azopt® twice a day. Serial full field electroretinography (ERG) was performed starting at day 50-60 post-injection. Mice were evaluated using a visually guided swim assay (VGSA) in light and dark conditions. The experimental groups were compared to untreated Rs1-KO (N = 11), wild-type (N = 12), and Rs1-KO mice receiving only Azopt® (N = 5). Immunofluorescence staining was performed to assess RS1 protein expression following treatment. RESULTS: The ERG b/a ratio was significantly higher in the subretinal plus Azopt® (p<0.0001), subretinal without Azopt® (p = 0.0002), and intravitreal (p = 0.01) treated eyes compared to untreated eyes. There was a highly significant subretinal treatment effect on ERG amplitudes collectively at 7-9 months post-injection (p = 0.0003). Cones showed more effect than rods. The subretinal group showed improved time to platform in the dark VGSA compared to untreated mice (p<0.0001). RS1 protein expression was detected in the outer retina in subretinal treated mice and in the inner retina in intravitreal treated mice. CONCLUSIONS: AAV2/4-RS1 shows promise for improving retinal phenotype in the Rs1-KO mouse model. Subretinal delivery was superior to intravitreal. Topical brinzolamide did not improve efficacy. AAV2/4-RS1 may be considered as a potential treatment for XLRS patients.


Assuntos
Retinosquise , Camundongos , Animais , Retinosquise/genética , Retinosquise/terapia , Camundongos Knockout , Terapia Genética
2.
Invest Ophthalmol Vis Sci ; 57(6): 2509-21, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27152965

RESUMO

PURPOSE: We characterize calpain-5 (CAPN5) expression in retinal and neuronal subcellular compartments. METHODS: CAPN5 gene variants were classified using the exome variant server, and RNA-sequencing was used to compare expression of CAPN5 mRNA in the mouse and human retina and in retinoblastoma cells. Expression of CAPN5 protein was ascertained in humans and mice in silico, in mouse retina by immunohistochemistry, and in neuronal cancer cell lines and fractionated central nervous system tissue extracts by Western analysis with eight antibodies targeting different CAPN5 regions. RESULTS: Most CAPN5 genetic variation occurs outside its protease core; and searches of cancer and epilepsy/autism genetic databases found no variants similar to hyperactivating retinal disease alleles. The mouse retina expressed one transcript for CAPN5 plus those of nine other calpains, similar to the human retina. In Y79 retinoblastoma cells, the level of CAPN5 transcript was very low. Immunohistochemistry detected CAPN5 expression in the inner and outer nuclear layers and at synapses in the outer plexiform layer. Western analysis of fractionated retinal extracts confirmed CAPN5 synapse localization. Western blots of fractionated brain neuronal extracts revealed distinct subcellular patterns and the potential presence of autoproteolytic CAPN5 domains. CONCLUSIONS: CAPN5 is moderately expressed in the retina and, despite higher expression in other tissues, hyperactive disease mutants of CAPN5 only manifest as eye disease. At the cellular level, CAPN5 is expressed in several different functional compartments. CAPN5 localization at the photoreceptor synapse and with mitochondria explains the neural circuitry phenotype in human CAPN5 disease alleles.


Assuntos
Calpaína/genética , Regulação Neoplásica da Expressão Gênica , Células Fotorreceptoras/metabolismo , RNA Neoplásico/genética , Neoplasias da Retina/genética , Retinoblastoma/genética , Sinapses/metabolismo , Animais , Western Blotting , Calpaína/biossíntese , Bovinos , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Neoplasias Experimentais , Células Fotorreceptoras/patologia , Retina/metabolismo , Retina/patologia , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Células Tumorais Cultivadas
3.
Traffic ; 16(12): 1239-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26373354

RESUMO

Na(+) /K(+) -ATPase (NKA) participates in setting electrochemical gradients, cardiotonic steroid signaling and cellular adhesion. Distinct isoforms of NKA are found in different tissues and subcellular localization patterns. For example, NKA α1 is widely expressed, NKA α3 is enriched in neurons and NKA α4 is a testes-specific isoform found in sperm flagella. In some tissues, ankyrin, a key component of the membrane cytoskeleton, can regulate the trafficking of NKA. In the retina, NKA and ankyrin-B are expressed in multiple cell types and immunostaining for each is striking in the synaptic layers. Labeling for NKA is also prominent along the inner segment plasma membrane (ISPM) of photoreceptors. NKA co-immunoprecipitates with ankyrin-B, but on a subcellular level colocalization of these two proteins varies dependent on the cell type. We used transgenic Xenopus laevis tadpoles to evaluate the subcellular trafficking of NKA in photoreceptors. GFP-NKA α3 and α1 are localized to the ISPM, but α4 is localized to outer segments (OSs). We identified a VxP motif responsible for the OS targeting by using a series of chimeric and mutant NKA constructs. This motif is similar to previously identified ciliary targeting motifs. Given the structural similarities between OSs and flagella, our findings shed light on the subcellular targeting of this testes-specific NKA isoform.


Assuntos
Anquirinas/metabolismo , Flagelos/enzimologia , Retina/enzimologia , Segmento Interno das Células Fotorreceptoras da Retina/enzimologia , Segmento Externo das Células Fotorreceptoras da Retina/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Motivos de Aminoácidos , Animais , Anquirinas/genética , Bovinos , Membrana Celular/enzimologia , Proteínas de Fluorescência Verde/genética , Humanos , Imunoprecipitação , Técnicas In Vitro , Larva/enzimologia , Camundongos Endogâmicos C57BL , Organismos Geneticamente Modificados , Subunidades Proteicas , Transporte Proteico , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , Especificidade da Espécie , Xenopus laevis/genética
4.
Vision Res ; 48(3): 413-23, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17931679

RESUMO

Intraflagellar transport (IFT) of a approximately 17S particle containing at least 16 distinct polypeptides is required for the assembly and maintenance of cilia and flagella. Although both genetic and biochemical evidence suggest a role for IFT in vertebrate photoreceptors, the spatial distribution of IFT proteins within photoreceptors remains poorly defined. We have evaluated the distribution of 4 IFT proteins using a combination of immunocytochemistry and rod-specific overexpression of GFP tagged IFT proteins. Endogenous IFT proteins are most highly concentrated within the inner segment, around the basal body, and within the outer segment IFT proteins are localized in discrete particles along the entire length of the axoneme. IFT52-GFP and IFT57-GFP mimicked this pattern in transgenic Xenopus.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Olho/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Animais , Animais Geneticamente Modificados , Embrião não Mamífero/metabolismo , Camundongos , Retina/diagnóstico por imagem , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Ultrassonografia , Xenopus
5.
J Biol Chem ; 278(36): 34211-8, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12821668

RESUMO

Intraflagellar transport (IFT) is an evolutionarily conserved mechanism thought to be required for the assembly and maintenance of all eukaryotic cilia and flagella. Although IFT proteins are present in cells with sensory cilia, the organization of IFT protein complexes in those cells has not been analyzed. To determine whether the IFT complex is conserved in the sensory cilia of photo-receptors, we investigated protein interactions among four mammalian IFT proteins: IFT88/Polaris, IFT57/Hippi, IFT52/NGD5, and IFT20. We demonstrate that IFT proteins extracted from bovine photoreceptor outer segments, a modified sensory cilium, co-fractionate at approximately 17 S, similar to IFT proteins extracted from mouse testis. Using antibodies to IFT88 and IFT57, we demonstrate that all four IFT proteins co-immunoprecipitate from lysates of mouse testis, kidney, and retina. We also extended our analysis to interactions outside of the IFT complex and demonstrate an ATP-regulated co-immunoprecipitation of heterotrimeric kinesin II with the IFT complex. The internal architecture of the IFT complex was investigated using the yeast two-hybrid system. IFT20 exhibited a strong interaction with IFT57/Hippi and the kinesin II subunit, KIF3B. Our data indicate that all four mammalian IFT proteins are part of a highly conserved complex in multiple ciliated cell types. Furthermore, IFT20 appears to bridge kinesin II with the IFT complex.


Assuntos
Proteínas de Ligação ao Cálcio/química , Cílios/química , Proteínas do Citoesqueleto/química , Flagelos/química , Proteínas Musculares/química , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Western Blotting , Bovinos , Proteínas do Citoesqueleto/metabolismo , Dimerização , Hidrólise , Íons , Rim/metabolismo , Cinesinas , Masculino , Camundongos , Modelos Biológicos , Células Fotorreceptoras/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Retina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Testículo/metabolismo , Técnicas do Sistema de Duplo-Híbrido , alfa-Galactosidase/metabolismo
7.
J Cell Biol ; 157(1): 103-13, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11916979

RESUMO

Approximately 10% of the photoreceptor outer segment (OS) is turned over each day, requiring large amounts of lipid and protein to be moved from the inner segment to the OS. Defects in intraphotoreceptor transport can lead to retinal degeneration and blindness. The transport mechanisms are unknown, but because the OS is a modified cilium, intraflagellar transport (IFT) is a candidate mechanism. IFT involves movement of large protein complexes along ciliary microtubules and is required for assembly and maintenance of cilia. We show that IFT particle proteins are localized to photoreceptor connecting cilia. We further find that mice with a mutation in the IFT particle protein gene, Tg737/IFT88, have abnormal OS development and retinal degeneration. Thus, IFT is important for assembly and maintenance of the vertebrate OS.


Assuntos
Proteínas de Protozoários/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Proteínas Supressoras de Tumor , Animais , Cegueira/etiologia , Bovinos , Chlamydomonas , Cílios/química , Cílios/metabolismo , Flagelos/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Mutagênese Insercional/fisiologia , Proteínas de Plantas , Proteínas/genética , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Coelhos , Células Fotorreceptoras Retinianas Bastonetes/química , Opsinas de Bastonetes/metabolismo , Testículo/química , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA