Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Med ; 54(1): 1548-1560, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35635048

RESUMO

Chronic liver disease (CLD), manifested as hepatic injury, is a major cause of global morbidity and mortality. CLD progresses to fibrosis, cirrhosis, and-ultimately-hepatocellular carcinoma (HCC) if left untreated. The different phenotypes of CLD based on their respective clinical features and causative agents include alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), metabolic-associated fatty liver disease (MAFLD), and drug-induced liver injury (DILI). The preferred treatment modality for CLD includes lifestyle modification and diet, along with limited pharmacological agents for symptomatic treatment. Moreover, oxidative stress (OS) is an important pathological mechanism underlying all CLD phenotypes; hence, the use of antioxidants to manage the disease is justified. Based on available clinical evidence, silymarin can be utilized as a hepatoprotective agent, given its potent antioxidant, antifibrotic, and anti-inflammatory properties. The role of silymarin in suppressing OS has been well established, and therefore silymarin is recommended for use in ALD and NAFLD in the guidelines approved by the Russian Medical Scientific Society of Therapists and the Gastroenterology Scientific Society of Russia. However, to discuss the positioning of the original silymarin in clinical guidelines and treatment protocols as a hepatoprotective agent for managing CLD concomitantly with other therapies, an expert panel of international and Russian medical professionals was convened on 11 November 2020. The panel reviewed approaches for the prevention and treatment of OS, existing guidelines for patient management for CLD, and available evidence on the effectiveness of silymarin in reducing OS, fibrosis, and hepatic inflammation and presented in the form of a narrative review. Key messagesAn expert panel of international and Russian medical professionals reviewed existing guidelines for ALD, NAFLD, MAFLD, and DILI to establish consensus recommendations that oxidative stress is the common pathophysiological mechanism underlying these conditions.The panel also discussed the positioning of original silymarin in clinical guidelines and treatment protocols as a hepatoprotective agent for managing CLD concomitantly with other therapies.The panel reviewed the effectiveness of 140 mg original silymarin three times a day in reducing oxidative stress in chronic liver diseases such as ALD, NAFLD, MAFLD, and DILI.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Silimarina , Antioxidantes/uso terapêutico , Humanos , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Substâncias Protetoras/uso terapêutico , Silimarina/farmacologia , Silimarina/uso terapêutico
2.
Microbiome ; 5(1): 141, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29041989

RESUMO

BACKGROUND: Alcohol abuse has deleterious effects on human health by disrupting the functions of many organs and systems. Gut microbiota has been implicated in the pathogenesis of alcohol-related liver diseases, with its composition manifesting expressed dysbiosis in patients suffering from alcoholic dependence. Due to its inherent plasticity, gut microbiota is an important target for prevention and treatment of these diseases. Identification of the impact of alcohol abuse with associated psychiatric symptoms on the gut community structure is confounded by the liver dysfunction. In order to differentiate the effects of these two factors, we conducted a comparative "shotgun" metagenomic survey of 99 patients with the alcohol dependence syndrome represented by two cohorts-with and without liver cirrhosis. The taxonomic and functional composition of the gut microbiota was subjected to a multifactor analysis including comparison with the external control group. RESULTS: Alcoholic dependence and liver cirrhosis were associated with profound shifts in gut community structures and metabolic potential across the patients. The specific effects on species-level community composition were remarkably different between cohorts with and without liver cirrhosis. In both cases, the commensal microbiota was found to be depleted. Alcoholic dependence was inversely associated with the levels of butyrate-producing species from the Clostridiales order, while the cirrhosis-with multiple members of the Bacteroidales order. The opportunist pathogens linked to alcoholic dependence included pro-inflammatory Enterobacteriaceae, while the hallmarks of cirrhosis included an increase of oral microbes in the gut and more frequent occurrence of abnormal community structures. Interestingly, each of the two factors was associated with the expressed enrichment in many Bifidobacterium and Lactobacillus-but the exact set of the species was different between alcoholic dependence and liver cirrhosis. At the level of functional potential, the patients showed different patterns of increase in functions related to alcohol metabolism and virulence factors, as well as pathways related to inflammation. CONCLUSIONS: Multiple shifts in the community structure and metabolic potential suggest strong negative influence of alcohol dependence and associated liver dysfunction on gut microbiota. The identified differences in patterns of impact between these two factors are important for planning of personalized treatment and prevention of these pathologies via microbiota modulation. Particularly, the expansion of Bifidobacterium and Lactobacillus suggests that probiotic interventions for patients with alcohol-related disorders using representatives of the same taxa should be considered with caution. Taxonomic and functional analysis shows an increased propensity of the gut microbiota to synthesis of the toxic acetaldehyde, suggesting higher risk of colorectal cancer and other pathologies in alcoholics.


Assuntos
Alcoolismo/microbiologia , Cirrose Hepática/microbiologia , Hepatopatias Alcoólicas/microbiologia , Adulto , Alcoolismo/fisiopatologia , Bifidobacterium/isolamento & purificação , Bifidobacterium/patogenicidade , Bifidobacterium/fisiologia , Disbiose , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/fisiologia , Etanol/efeitos adversos , Etanol/metabolismo , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Inflamação , Lactobacillus/isolamento & purificação , Lactobacillus/patogenicidade , Lactobacillus/fisiologia , Fígado/fisiopatologia , Cirrose Hepática/fisiopatologia , Hepatopatias Alcoólicas/fisiopatologia , Hepatopatias Alcoólicas/terapia , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , Probióticos/uso terapêutico , Simbiose , Fatores de Virulência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA