Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Immunity ; 55(8): 1448-1465.e6, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931085

RESUMO

Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.


Assuntos
Doença de Alzheimer , Microglia , Envelhecimento , Doença de Alzheimer/genética , Animais , Encéfalo/patologia , Humanos , Macrófagos/patologia , Glicoproteínas de Membrana , Camundongos , Microglia/patologia , Receptores Imunológicos
2.
Int J Cancer ; 151(3): 435-449, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35415893

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and debilitating disease with limited therapeutic options. The aim of this clinical study was to evaluate the safety, efficacy and pharmacokinetics of a novel regimen comprised of metronomic oxaliplatin (O), chronomodulated capecitabine (X) and UGT1A1 genotype-guided dosing of irinotecan (IRI) [OXIRI] as well as its immunomodulatory effects. Thirty-six patients were enrolled into either dose-escalation or expansion cohorts. In the dose escalation phase, capecitabine doses (2000, 2650, 3500 and 4500 mg/day) were administered at midnight on days 1 to 14 while oxaliplatin and irinotecan were intravenously infused at fixed doses of 50 and 75 mg/m2 respectively on days 1, 8 in a 21-day cycle. The maximum tolerated dose of capecitabine was 2650 mg/day and the most common grade 3 adverse events were neutropenia (30.6%) and diarrhea (13.9%). No grade 4 toxicity was observed. UGT1A1-genotype directed dosing resulted in similar exposure levels of irinotecan, SN-38 and SN-38G in all patients. Objective response rate was 22.2%. Median overall survival and progression-free survival were 8.1 and 5.2 months, respectively. Exploratory immunoprofiling by flow cytometry and quantitative spatial localization analysis of infiltrated immune cells performed on biopsy and plasma samples revealed significant declines in CCL22, CCL2 and TNFα levels at end of first cycle and an active host immune response. Our study showed that OXIRI was well-tolerated and exhibited good efficacy, with immunomodulatory effects. It may be considered as an alternative to FOLFIRINOX in patients intolerant to the latter.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Camptotecina , Capecitabina/uso terapêutico , Fluoruracila/uso terapêutico , Humanos , Imunidade , Irinotecano , Oxaliplatina , Neoplasias Pancreáticas/patologia , Resultado do Tratamento , Neoplasias Pancreáticas
3.
Cell ; 183(1): 94-109.e23, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32937105

RESUMO

Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.


Assuntos
Macrófagos/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Idoso , Animais , Apoptose , Autofagia , Feminino , Coração/fisiologia , Homeostase , Humanos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Fagocitose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase/metabolismo
4.
Science ; 363(6432)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872492

RESUMO

Macrophages are a heterogeneous cell population involved in tissue homeostasis, inflammation, and various pathologies. Although the major tissue-resident macrophage populations have been extensively studied, interstitial macrophages (IMs) residing within the tissue parenchyma remain poorly defined. Here we studied IMs from murine lung, fat, heart, and dermis. We identified two independent IM subpopulations that are conserved across tissues: Lyve1loMHCIIhiCX3CR1hi (Lyve1loMHCIIhi) and Lyve1hiMHCIIloCX3CR1lo (Lyve1hiMHCIIlo) monocyte-derived IMs, with distinct gene expression profiles, phenotypes, functions, and localizations. Using a new mouse model of inducible macrophage depletion (Slco2b1 flox/DTR), we found that the absence of Lyve1hiMHCIIlo IMs exacerbated experimental lung fibrosis. Thus, we demonstrate that two independent populations of IMs coexist across tissues and exhibit conserved niche-dependent functional programming.


Assuntos
Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Animais , Antígenos Ly , Receptor 1 de Quimiocina CX3C/genética , Linhagem da Célula , Derme/imunologia , Modelos Animais de Doenças , Fibrose , Glicoproteínas/análise , Antígenos de Histocompatibilidade Classe II/genética , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Miocárdio/imunologia , Transportadores de Ânions Orgânicos/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma
5.
J Exp Med ; 215(11): 2778-2795, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30282719

RESUMO

Immune protection relies on the capacity of neutrophils to infiltrate challenged tissues. Naive tissues, in contrast, are believed to remain free of these cells and protected from their toxic cargo. Here, we show that neutrophils are endowed with the capacity to infiltrate multiple tissues in the steady-state, a process that follows tissue-specific dynamics. By focusing in two particular tissues, the intestine and the lungs, we find that neutrophils infiltrating the intestine are engulfed by resident macrophages, resulting in repression of Il23 transcription, reduced G-CSF in plasma, and reinforced activity of distant bone marrow niches. In contrast, diurnal accumulation of neutrophils within the pulmonary vasculature influenced circadian transcription in the lungs. Neutrophil-influenced transcripts in this organ were associated with carcinogenesis and migration. Consistently, we found that neutrophils dictated the diurnal patterns of lung invasion by melanoma cells. Homeostatic infiltration of tissues unveils a facet of neutrophil biology that supports organ function, but can also instigate pathological states.


Assuntos
Neoplasias Pulmonares/imunologia , Pulmão/imunologia , Melanoma/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Animais , Feminino , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/imunologia , Interleucina-23/genética , Interleucina-23/imunologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Knockout , Invasividade Neoplásica/genética , Invasividade Neoplásica/imunologia , Neutrófilos/patologia , Transcrição Gênica/imunologia
6.
J Exp Med ; 213(11): 2293-2314, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27811056

RESUMO

It is well established that Ly6Chi monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6Chi monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6Chi monocytes consist of two distinct subpopulations (CXCR4hi and CXCR4lo subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4hi subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4lo monocytes. We propose that the CXCR4hi subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Monócitos/citologia , Receptores CXCR4/metabolismo , Animais , Antígenos Ly/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Ritmo Circadiano/genética , Endotoxinas/toxicidade , Feminino , Perfilação da Expressão Gênica , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo
7.
Cell Rep ; 16(6): 1749-1761, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477286

RESUMO

Tissue macrophages exhibit diverse functions, ranging from the maintenance of tissue homeostasis, including clearance of senescent erythrocytes and cell debris, to modulation of inflammation and immunity. Their contribution to the control of blood-stage malaria remains unclear. Here, we show that in the absence of tissue-resident CD169(+) macrophages, Plasmodium berghei ANKA (PbA) infection results in significantly increased parasite sequestration, leading to vascular occlusion and leakage and augmented tissue deposition of the malarial pigment hemozoin. This leads to widespread tissue damage culminating in multiple organ inflammation. Thus, the capacity of CD169(+) macrophages to contain the parasite burden and its sequestration into different tissues and to limit infection-induced inflammation is crucial to mitigating Plasmodium infection and pathogenesis.


Assuntos
Macrófagos/parasitologia , Malária/imunologia , Plasmodium berghei/parasitologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Animais , Eritrócitos/parasitologia , Hemeproteínas/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Eur J Immunol ; 45(5): 1494-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25652593

RESUMO

DCs are crucial for sensing pathogens and triggering immune response. Upon activation by pathogen-associated molecular pattern (PAMP) ligands, GM-CSF myeloid DCs (GM-DCs) secrete several cytokines, including IL-2. DC IL-2 has been shown to be important for innate and adaptive immune responses; however, IL-2 importance in DC physiology has never been demonstrated. Here, we show that autocrine IL-2 signaling is functional in murine GM-DCs in an early time window after PAMPs stimulation. IL-2 signaling selectively activates the JAK/STAT5 pathway by assembling holo-receptor complexes at the cell surface. Using the sensitivity of targeted mass spectrometry, we show conclusively that GM-DCs express CD122, the IL-2 receptor ß-chain, at steady state. In myeloid DCs, this cytokine pathway inhibits survival of PAMP-matured GM-DCs which is crucial for maintaining immune tolerance and preventing autoimmunity. Our findings suggest that immune regulation by this novel autocrine signaling pathway can potentially be used in DC immunotherapy.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/imunologia , Interleucina-2/metabolismo , Animais , Comunicação Autócrina/imunologia , Diferenciação Celular/imunologia , Sobrevivência Celular/imunologia , Células Dendríticas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Interleucina-2/deficiência , Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/metabolismo , Janus Quinases/metabolismo , Ligantes , Camundongos , Camundongos Knockout , Subunidades Proteicas , Receptores de Interleucina-2/química , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Fator de Transcrição STAT5/metabolismo , Regulação para Cima/efeitos dos fármacos , beta-Glucanas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA