Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446117

RESUMO

Transglutaminase 2 (TG2) is a critical cancer cell survival factor that activates several signalling pathways to foster drug resistance, cancer stem cell survival, metastasis, inflammation, epithelial-mesenchymal transition, and angiogenesis. All-trans retinoic acid (ATRA) and chemotherapy have been the standard treatments for acute promyelocytic leukaemia (APL), but clinical studies have shown that arsenic trioxide (ATO), alone or in combination with ATRA, can improve outcomes. ATO exerts cytotoxic effects in a variety of ways by inducing oxidative stress, genotoxicity, altered signal transduction, and/or epigenetic modification. In the present study, we showed that ATO increased ROS production and apoptosis ratios in ATRA-differentiated NB4 leukaemia cells, and that these responses were enhanced when TG2 was deleted. The combined ATRA + ATO treatment also increased the amount of nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor, an adaptive regulator of the cellular oxidative stress response, and calpain proteolytic activity, resulting in TG2 degradation and the reduced survival of WT leukaemia cells. We further showed that the induced TG2 protein expression was degraded in the MCF-7 epithelial cell line and primary peripheral blood mononuclear cells upon ATO treatment, thereby sensitising these cell types to apoptotic signals.


Assuntos
Arsenicais , Leucemia Promielocítica Aguda , Humanos , Trióxido de Arsênio/farmacologia , Trióxido de Arsênio/uso terapêutico , Calpaína/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Proteína 2 Glutamina gama-Glutamiltransferase , Leucócitos Mononucleares/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Apoptose , Óxidos/farmacologia , Arsenicais/farmacologia
2.
Cell Death Dis ; 14(3): 217, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977701

RESUMO

Atypically expressed transglutaminase 2 (TG2) has been identified as a poor prognostic factor in a variety of cancers. In this study, we evaluated the contribution of TG2 to the prolonged cell survival of differentiated acute promyelocytic leukaemia (APL) cells in response to the standard treatment with combined retinoic acid (ATRA) and arsenic trioxide (ATO). We report that one advantage of ATRA + ATO treatment compared to ATRA alone diminishes the amount of activated and non-activated CD11b/CD18 and CD11c/CD18 cell surface integrin receptors. These changes suppress ATRA-induced TG2 docking on the cytosolic part of CD18 ß2-integrin subunits and reduce cell survival. In addition, TG2 overexpresses and hyperactivates the phosphatidylinositol-3-kinase (PI3K), phospho-AKT S473, and phospho-mTOR S2481 signalling axis. mTORC2 acts as a functional switch between cell survival and death by promoting the full activation of AKT. We show that TG2 presumably triggers the formation of a signalosome platform, hyperactivates downstream mTORC2-AKT signalling, which in turn phosphorylates and inhibits the activity of FOXO3, a key pro-apoptotic transcription factor. In contrast, the absence of TG2 restores basic phospho-mTOR S2481, phospho-AKT S473, PI3K, and PTEN expression and activity, thereby sensitising APL cells to ATO-induced cell death. We conclude, that atypically expressed TG2 may serve as a hub, facilitating signal transduction via signalosome formation by the CD18 subunit with both PI3K hyperactivation and PTEN inactivation through the PI3K-PTEN cycle in ATRA-treated APL cells.


Assuntos
Arsenicais , Leucemia Promielocítica Aguda , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Trióxido de Arsênio , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Tretinoína/farmacologia , Serina-Treonina Quinases TOR , Morte Celular , Alvo Mecanístico do Complexo 2 de Rapamicina , Integrinas , Arsenicais/farmacologia , PTEN Fosfo-Hidrolase/genética
3.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927882

RESUMO

Thermogenic brown and beige adipocytes oxidize metabolic substrates producing heat, mainly by the mitochondrial uncoupling protein UCP1, and can thus counteract obesity. Masked beige adipocytes possess white adipocyte-like morphology, but can be made thermogenic by adrenergic stimuli. We investigated the regulation of mitophagy upon thermogenic activation of human masked and mature beige adipocytes. Human primary abdominal subcutaneous adipose-derived stromal cells (hASCs) and Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes were differentiated to white and beige adipocytes, then their cAMP-induced thermogenic potential was assessed by detecting increased expressions of UCP1, mitochondrial DNA content and respiratory chain complex subunits. cAMP increased the thermogenic potential of white adipocytes similarly to beige ones, indicating the presence of a masked beige population. In unstimulated conditions, a high autophagic flux and mitophagy rates (demonstrated by LC3 punctae and TOM20 co-immunostaining) were observed in white adipocytes, while these were lower in beige adipocytes. Silencing and gene expression experiments showed that the ongoing mitophagy was Parkin-independent. cAMP treatment led to the downregulation of mitophagy through PKA in both types of adipocytes, resulting in more fragmented mitochondria and increased UCP1 levels. Our data indicates that mitophagy is repressed upon encountering a short-term adrenergic stimulus, as a fast regulatory mechanism to provide high mitochondrial content for thermogenesis.


Assuntos
Adipócitos Bege/metabolismo , Mitofagia , Termogênese , Adipócitos Brancos/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Voluntários Saudáveis , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Cancers (Basel) ; 12(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168763

RESUMO

Randomized trials in acute promyelocytic leukemia patients have shown that treatment with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) is superior in efficacy to monotherapy, with significantly decreased mortality. So far, there are little data available to explain the success of the ATRA and ATO combination treatment in molecular terms. We showed that ATRA- and ATO-treated cells had the same capacity for superoxide production, which was reduced by two-thirds in the combined treatment. Secreted inflammatory biomarkers (monocyte chemoattractant protein-1 [MCP-1], interleukin-1 beta [IL-1ß] and tumor necrosis factor-α [TNF-α]) were significantly decreased and were further reduced in a transglutaminase 2 (TG2) expression-dependent manner. The amount of secreted TNF-α in the supernatant of NB4 TG2 knockout cells was close to 50 times lower than in ATRA-treated differentiated wild-type NB4 cells. The irreversible inhibitor of TG2 NC9 not only decreased reactive oxygen species production 28-fold, but decreased the concentration of MCP-1, IL-1ß and TNF-α 8-, 15- and 61-fold, respectively in the combined ATRA + ATO-treated wild-type NB4 cell culture. We propose that atypical expression of TG2 leads to the generation of inflammation, which thereby serves as a potential target for the prevention of differentiation syndrome.

5.
Proc Natl Acad Sci U S A ; 116(42): 21120-21130, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570576

RESUMO

Interleukin-2 (IL-2) and IL-15 play pivotal roles in T cell activation, apoptosis, and survival, and are implicated in leukemias and autoimmune diseases. Their heterotrimeric receptors share their ß- and γc-chains, but have distinct α-chains. Anti-IL-2Rα (daclizumab) therapy targeting cell surface-expressed receptor subunits to inhibit T cell proliferation has only brought limited success in adult T cell leukemia/lymphoma (ATL) and in multiple sclerosis. We asked whether IL-2R subunits could already preassemble and signal efficiently in the endoplasmic reticulum (ER) and the Golgi. A combination of daclizumab and anti-IL-2 efficiently blocked IL-2-induced proliferation of IL-2-dependent wild-type (WT) ATL cells but not cells transfected with IL-2, suggesting that in IL-2-producing cells signaling may already take place before receptors reach the cell surface. In the Golgi fraction isolated from IL-2-producing ATL cells, we detected by Western blot phosphorylated Jak1, Jak3, and a phosphotyrosine signal attributed to the γc-chain, which occurred at much lower levels in the Golgi of WT ATL cells. We expressed EGFP- and mCherry-tagged receptor chains in HeLa cells to study their assembly along the secretory pathway. Confocal microscopy, Förster resonance energy transfer, and imaging fluorescence cross-correlation spectroscopy analysis revealed partial colocalization and molecular association of IL-2 (and IL-15) receptor chains in the ER/Golgi, which became more complete in the plasma membrane, further confirming our hypothesis. Our results define a paradigm of intracellular autocrine signaling and may explain resistance to antagonistic antibody therapies targeting receptors at the cell surface.


Assuntos
Proliferação de Células/fisiologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-2/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Interleucina-15/metabolismo , Janus Quinase 1/metabolismo , Janus Quinase 3/metabolismo , Receptores de Interleucina-15/metabolismo , Transdução de Sinais/fisiologia
6.
Exp Cell Res ; 377(1-2): 47-55, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30794803

RESUMO

Brown and beige adipocytes contribute significantly to the regulation of whole body energy expenditure and systemic metabolic homeostasis not exclusively by thermogenesis through mitochondrial uncoupling. Several studies have provided evidence in rodents that brown and beige adipocytes produce a set of adipokines ("batokines") which regulate local tissue homeostasis and have beneficial effects on physiological functions of the entire body. We observed elevated secretion of Interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1, but not tumor necrosis factor alpha (TNFα) or IL-1ß pro-inflammatory cytokines, by ex vivo differentiating human beige adipocytes (induced by either PPARγ agonist or irisin) compared to white. Higher levels of IL-6, IL-8 and MCP-1 were released from human deep neck adipose tissue biopsies (enriched in browning cells) than from subcutaneous ones. IL-6 was produced in a sustained manner and mostly by the adipocytes and not by the undifferentiated progenitors. Continuous blocking of IL-6 receptor by specific antibody during beige differentiation resulted in downregulation of brown marker genes and increased morphological changes that are characteristic of white adipocytes. The data suggest that beige adipocytes adjust their production of IL-6 to reach an optimal level for differentiation in the medium enhancing browning in an autocrine manner.


Assuntos
Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Tecido Adiposo Marrom/fisiologia , Diferenciação Celular , Interleucina-6/metabolismo , Adulto , Idoso , Células Cultivadas , Quimiocina CCL2/metabolismo , Metabolismo Energético , Humanos , Interleucina-8/metabolismo , Pessoa de Meia-Idade , Consumo de Oxigênio , Adulto Jovem
7.
Haematologica ; 104(3): 505-515, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30237268

RESUMO

Differentiation syndrome (DS) is a life-threatening complication arising during retinoid treatment of acute promyelocytic leukemia (APL). Administration of all-trans retinoic acid leads to significant changes in gene expression, among the most induced of which is transglutaminase 2, which is not normally expressed in neutrophil granulocytes. To evaluate the pathophysiological function of transglutaminase 2 in the context of immunological function and disease outcomes, such as excessive superoxide anion, cytokine, and chemokine production in differentiated NB4 cells, we used an NB4 transglutaminase knock-out cell line and a transglutaminase inhibitor, NC9, which inhibits both transamidase- and guanosine triphosphate-binding activities, to clarify the contribution of transglutaminase to the development of potentially lethal DS during all-trans retinoic acid treatment of APL. We found that such treatment not only enhanced cell-surface expression of CD11b and CD11c but also induced high-affinity states; atypical transglutaminase 2 expression in NB4 cells activated the nuclear factor kappa (κ)-light-chain-enhancer of the activated B-cell pathway, driving pathogenic processes with an inflammatory cascade through the expression of numerous cytokines, including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1ß), and monocyte chemoattractant protein 1. NC9 decreased the amount of transglutaminase 2, p65/RelA, and p50 in differentiated NB4 cells and their nuclei, leading to attenuated inflammatory cytokine synthesis. NC9 significantly inhibits transglutaminase 2 nuclear translocation but accelerates its proteasomal breakdown. This study demonstrates that transglutaminase 2 expression induced by all-trans retinoic acid treatment reprograms inflammatory signaling networks governed by nuclear factor κ-light-chain-enhancer of activated B-cell activation, resulting in overexpression of TNF-α and IL-1ß in differentiating APL cells, suggesting that atypically expressed transglutaminase 2 is a promising target for leukemia treatment.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação ao GTP/genética , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Transglutaminases/genética , Tretinoína/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos CD11/genética , Antígenos CD11/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Proteínas de Ligação ao GTP/deficiência , Proteínas de Ligação ao GTP/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Mediadores da Inflamação/metabolismo , Leucemia Promielocítica Aguda/diagnóstico , Leucemia Promielocítica Aguda/tratamento farmacológico , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , NF-kappa B/genética , Estadiamento de Neoplasias , Fagocitose , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/deficiência , Transglutaminases/metabolismo , Tretinoína/uso terapêutico
8.
Cytometry A ; 83(10): 933-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23846866

RESUMO

Understanding adipocyte biology and its homeostasis is in the focus of current obesity research. We aimed to introduce a high-content analysis procedure for directly visualizing and quantifying adipogenesis and adipoapoptosis by laser scanning cytometry (LSC) in a large population of cell. Slide-based image cytometry and image processing algorithms were used and optimized for high-throughput analysis of differentiating cells and apoptotic processes in cell culture at high confluence. Both preadipocytes and adipocytes were simultaneously scrutinized for lipid accumulation, texture properties, nuclear condensation, and DNA fragmentation. Adipocyte commitment was found after incubation in adipogenic medium for 3 days identified by lipid droplet formation and increased light absorption, while terminal differentiation of adipocytes occurred throughout day 9-14 with characteristic nuclear shrinkage, eccentric nuclei localization, chromatin condensation, and massive lipid deposition. Preadipocytes were shown to be more prone to tumor necrosis factor alpha (TNFα)-induced apoptosis compared to mature adipocytes. Importantly, spontaneous DNA fragmentation was observed at early stage when adipocyte commitment occurs. This DNA damage was independent from either spontaneous or induced apoptosis and probably was part of the differentiation program. © 2013 International Society for Advancement of Cytometry.


Assuntos
Adipócitos/citologia , Adipogenia/fisiologia , Apoptose/fisiologia , Citometria de Varredura a Laser/métodos , Diferenciação Celular/fisiologia , Humanos , Interpretação de Imagem Assistida por Computador
9.
Blood ; 116(19): 3933-43, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20739659

RESUMO

Treatment of acute promyelocytic leukemia (APL) with all-trans-retinoic acid (ATRA) results in terminal differentiation of leukemic cells toward neutrophil granulocytes. Administration of ATRA leads to massive changes in gene expression, including down-regulation of cell proliferation-related genes and induction of genes involved in immune function. One of the most induced genes in APL NB4 cells is transglutaminase 2 (TG2). RNA interference-mediated stable silencing of TG2 in NB4 cells (TG2-KD NB4) coupled with whole genome microarray analysis revealed that TG2 is involved in the expression of a large number of ATRA-regulated genes. The affected genes participate in granulocyte functions, and their silencing lead to reduced adhesive, migratory, and phagocytic capacity of neutrophils and less superoxide production. The expression of genes related to cell-cycle control also changed, suggesting that TG2 regulates myeloid cell differentiation. CC chemokines CCL2, CCL3, CCL22, CCL24, and cytokines IL1B and IL8 involved in the development of differentiation syndrome are expressed at significantly lower level in TG2-KD NB4 than in wild-type NB4 cells upon ATRA treatment. Based on our results, we propose that reduced expression of TG2 in differentiating APL cells may suppress effector functions of neutrophil granulocytes and attenuate the ATRA-induced inflammatory phenotype of differentiation syndrome.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/enzimologia , Transglutaminases/metabolismo , Tretinoína/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Quimiocinas CC/biossíntese , Quimiocinas CC/genética , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Granulócitos/efeitos dos fármacos , Granulócitos/enzimologia , Granulócitos/imunologia , Granulócitos/patologia , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteína 2 Glutamina gama-Glutamiltransferase , RNA Interferente Pequeno/genética , Transglutaminases/antagonistas & inibidores , Transglutaminases/genética
10.
J Immunol ; 182(4): 2084-92, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19201861

RESUMO

Transglutaminase 2 (TG2), a protein cross-linking enzyme with many additional biological functions, acts as coreceptor for integrin beta(3). We have previously shown that TG2(-/-) mice develop an age-dependent autoimmunity due to defective in vivo clearance of apoptotic cells. Here we report that TG2 on the cell surface and in guanine nucleotide-bound form promotes phagocytosis. Besides being a binding partner for integrin beta(3), a receptor known to mediate the uptake of apoptotic cells via activating Rac1, we also show that TG2 binds MFG-E8 (milk fat globulin EGF factor 8), a protein known to bridge integrin beta(3) to apoptotic cells. Finally, we report that in wild-type macrophages one or two engulfing portals are formed during phagocytosis of apoptotic cells that are characterized by accumulation of integrin beta(3) and Rac1. In the absence of TG2, integrin beta(3) cannot properly recognize the apoptotic cells, is not accumulated in the phagocytic cup, and its signaling is impaired. As a result, the formation of the engulfing portals, as well as the portals formed, is much less efficient. We propose that TG2 has a novel function to stabilize efficient phagocytic portals.


Assuntos
Apoptose/imunologia , Proteínas de Ligação ao GTP/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Transglutaminases/imunologia , Animais , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Imunofluorescência , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Integrina beta3/imunologia , Integrina beta3/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Proteínas do Leite/imunologia , Proteínas do Leite/metabolismo , Mutagênese Sítio-Dirigida , Proteína 2 Glutamina gama-Glutamiltransferase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Transglutaminases/genética , Transglutaminases/metabolismo , Proteínas rac1 de Ligação ao GTP/imunologia , Proteínas rac1 de Ligação ao GTP/metabolismo
11.
Drug Metab Lett ; 2(2): 83-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19356076

RESUMO

Macromolecule-bound Val-Leu-Lys-ara-C (1) prodrugs were synthesized with spacers (-HN-(CH(2))(x)-CO-; x =1,3,5) between the dextran carrier (T-70) and 1, in order to achieve a sustained-release drug delivery system dextran-NH-(CH(2))(x:1,3,5)-CO-Val-Leu-Lys-ara-C (5, 6 and 7). The conjugation increased the stability of 1 in aqueous buffer solutions by three times (t((1/2)) 53.0 h, pH 7.4). The length of spacer also regulated the rate of hydrolysis of the prodrugs in serum. The shortest spacer (-HN-(CH(2))-CO-, (2)) in 5 provided the best protection of 1 against the hydrolyzing ability of proteinase- alpha(2)-macroglobulin complexes, increasing its half-life approximately 30-fold. The conjugation procedure resulted in a growth arrest ability for macromolecular-bound prodrugs 5, 6 and 7 against L1210 with IC(50) of 0.01 microM in vitro, which is significantly lower than that of other ara-C-macromolecule conjugates. 5 and 6 arrested cell growth in a broader range of concentration, between 1 x 10(-5)-1.0 microM, than ara-C could.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Citarabina/administração & dosagem , Leucemia L1210/tratamento farmacológico , Pró-Fármacos/administração & dosagem , Animais , Antimetabólitos Antineoplásicos/síntese química , Linhagem Celular Tumoral , Citarabina/análogos & derivados , Citarabina/síntese química , Preparações de Ação Retardada , Dextranos/química , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Meia-Vida , Humanos , Hidrólise , Concentração Inibidora 50 , Leucemia L1210/metabolismo , Camundongos , Pró-Fármacos/síntese química , alfa-Macroglobulinas/metabolismo
12.
Blood ; 108(6): 2045-54, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16763214

RESUMO

Promyelocytic NB4 leukemia cells undergo differentiation to granulocytes following retinoic acid treatment. Here we report that tissue transglutaminase (TG2), a protein cross-linking enzyme, was induced, then partially translocated into the nucleus, and became strongly associated with the chromatin during the differentiation process. The transglutaminase-catalyzed cross-link content of both the cytosolic and the nuclear protein fractions increased while NB4 cells underwent cellular maturation. Inhibition of cross-linking activity of TG2 by monodansylcadaverin in these cells led to diminished nitroblue tetrazolium (NBT) positivity, production of less superoxide anion, and decreased expression of GP91PHOX, the membrane-associated subunit of NADPH oxidase. Neutrophils isolated from TG2(-/-) mice showed diminished NBT reduction capacity, reduced superoxide anion formation, and down-regulation of the gp91phox subunit of NADPH oxidase, compared with wild-type cells. It was also observed that TG2(-/-) mice exhibited increased neutrophil phagocytic activity, but had attenuated neutrophil chemotaxis and impaired neutrophil extravasation with higher neutrophil counts in their circulation during yeast extract-induced peritonitis. These results clearly suggest that TG2 may modulate the expression of genes related to neutrophil functions and is involved in several intracellular and extracellular functions of extravasating neutrophil.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Granulócitos/citologia , Granulócitos/enzimologia , Neutrófilos/citologia , Neutrófilos/enzimologia , Transglutaminases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sequência de Bases , Cadaverina/análogos & derivados , Cadaverina/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , Quimiotaxia de Leucócito , DNA/genética , Escherichia coli/imunologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/deficiência , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Granulócitos/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Neutrófilos/fisiologia , Fagocitose , Proteína 2 Glutamina gama-Glutamiltransferase , Superóxidos/metabolismo , Transglutaminases/antagonistas & inibidores , Transglutaminases/deficiência , Transglutaminases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA