Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Blood Adv ; 7(22): 6898-6912, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37729429

RESUMO

Hemogenic endothelial cells (HECs) are specialized cells that undergo endothelial-to-hematopoietic transition (EHT) to give rise to the earliest precursors of hematopoietic progenitors that will eventually sustain hematopoiesis throughout the lifetime of an organism. Although HECs are thought to be primarily limited to the aorta-gonad-mesonephros (AGM) during early development, EHT has been described in various other hematopoietic organs and embryonic vessels. Though not defined as a hematopoietic organ, the lung houses many resident hematopoietic cells, aids in platelet biogenesis, and is a reservoir for hematopoietic stem and progenitor cells (HSPCs). However, lung HECs have never been described. Here, we demonstrate that the fetal lung is a potential source of HECs that have the functional capacity to undergo EHT to produce de novo HSPCs and their resultant progeny. Explant cultures of murine and human fetal lungs display adherent endothelial cells transitioning into floating hematopoietic cells, accompanied by the gradual loss of an endothelial signature. Flow cytometric and functional assessment of fetal-lung explants showed the production of multipotent HSPCs that expressed the EHT and pre-HSPC markers EPCR, CD41, CD43, and CD44. scRNA-seq and small molecule modulation demonstrated that fetal lung HECs rely on canonical signaling pathways to undergo EHT, including TGFß/BMP, Notch, and YAP. Collectively, these data support the possibility that post-AGM development, functional HECs are present in the fetal lung, establishing this location as a potential extramedullary site of de novo hematopoiesis.


Assuntos
Hemangioblastos , Hematopoese , Animais , Camundongos , Humanos , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Endotélio , Hemangioblastos/metabolismo
2.
Curr Opin HIV AIDS ; 18(4): 191-208, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37265268

RESUMO

PURPOSE OF REVIEW: Passive administration of broadly neutralizing antibodies (bNAbs) is being evaluated as a therapeutic approach to prevent or treat HIV infections. However, a number of challenges face the widespread implementation of passive transfer for HIV. To reduce the need of recurrent administrations of bNAbs, gene-based delivery approaches have been developed which overcome the limitations of passive transfer. RECENT FINDINGS: The use of DNA and mRNA for the delivery of bNAbs has made significant progress. DNA-encoded monoclonal antibodies (DMAbs) have shown great promise in animal models of disease and the underlying DNA-based technology is now being tested in vaccine trials for a variety of indications. The COVID-19 pandemic greatly accelerated the development of mRNA-based technology to induce protective immunity. These advances are now being successfully applied to the delivery of monoclonal antibodies using mRNA in animal models. Delivery of bNAbs using viral vectors, primarily adeno-associated virus (AAV), has shown great promise in preclinical animal models and more recently in human studies. Most recently, advances in genome editing techniques have led to engineering of monoclonal antibody expression from B cells. These efforts aim to turn B cells into a source of evolving antibodies that can improve through repeated exposure to the respective antigen. SUMMARY: The use of these different platforms for antibody delivery has been demonstrated across a wide range of animal models and disease indications, including HIV. Although each approach has unique strengths and weaknesses, additional advances in efficiency of gene delivery and reduced immunogenicity will be necessary to drive widespread implementation of these technologies. Considering the mounting clinical evidence of the potential of bNAbs for HIV treatment and prevention, overcoming the remaining technical challenges for gene-based bNAb delivery represents a relatively straightforward path towards practical interventions against HIV infection.


Assuntos
COVID-19 , Infecções por HIV , HIV-1 , Animais , Humanos , Infecções por HIV/prevenção & controle , Anticorpos Amplamente Neutralizantes , Anticorpos Anti-HIV , Anticorpos Neutralizantes , Pandemias , HIV-1/genética , COVID-19/terapia , Anticorpos Monoclonais/genética
4.
Cell Rep ; 39(3): 110714, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35421379

RESUMO

The human immunological mechanisms defining the clinical outcome of SARS-CoV-2 infection remain elusive. This knowledge gap is mostly driven by the lack of appropriate experimental platforms recapitulating human immune responses in a controlled human lung environment. Here, we report a mouse model (i.e., HNFL mice) co-engrafted with human fetal lung xenografts (fLX) and a myeloid-enhanced human immune system to identify cellular and molecular correlates of lung protection during SARS-CoV-2 infection. Unlike mice solely engrafted with human fLX, HNFL mice are protected against infection, severe inflammation, and histopathological phenotypes. Lung tissue protection from infection and severe histopathology associates with macrophage infiltration and differentiation and the upregulation of a macrophage-enriched signature composed of 11 specific genes mainly associated with the type I interferon signaling pathway. Our work highlights the HNFL model as a transformative platform to investigate, in controlled experimental settings, human myeloid immune mechanisms governing lung tissue protection during SARS-CoV-2 infection.


Assuntos
COVID-19 , Animais , COVID-19/genética , Modelos Animais de Doenças , Humanos , Imunidade Inata , Pulmão/patologia , Macrófagos , Camundongos , SARS-CoV-2
5.
Nat Med ; 28(5): 1022-1030, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411076

RESUMO

Adeno-associated viral vector-mediated transfer of DNA coding for broadly neutralizing anti-HIV antibodies (bnAbs) offers an alternative to attempting to induce protection by vaccination or by repeated infusions of bnAbs. In this study, we administered a recombinant bicistronic adeno-associated virus (AAV8) vector coding for both the light and heavy chains of the potent broadly neutralizing HIV-1 antibody VRC07 (AAV8-VRC07) to eight adults living with HIV. All participants remained on effective anti-retroviral therapy (viral load (VL) <50 copies per milliliter) throughout this phase 1, dose-escalation clinical trial ( NCT03374202 ). AAV8-VRC07 was given at doses of 5 × 1010, 5 × 1011 and 2.5 × 1012 vector genomes per kilogram by intramuscular (IM) injection. Primary endpoints of this study were to assess the safety and tolerability of AAV8-VRC07; to determine the pharmacokinetics and immunogenicity of in vivo VRC07 production; and to describe the immune response directed against AAV8-VRC07 vector and its products. Secondary endpoints were to assess the clinical effects of AAV8-VRC07 on CD4 T cell count and VL and to assess the persistence of VRC07 produced in participants. In this cohort, IM injection of AAV8-VRC07 was safe and well tolerated. No clinically significant change in CD4 T cell count or VL occurred during the 1-3 years of follow-up reported here. In participants who received AAV8-VRC07, concentrations of VRC07 were increased 6 weeks (P = 0.008) and 52 weeks (P = 0.016) after IM injection of the product. All eight individuals produced measurable amounts of serum VRC07, with maximal VRC07 concentrations >1 µg ml-1 in three individuals. In four individuals, VRC07 serum concentrations remained stable near maximal concentration for up to 3 years of follow-up. In exploratory analyses, neutralizing activity of in vivo produced VRC07 was similar to that of in vitro produced VRC07. Three of eight participants showed a non-idiotypic anti-drug antibody (ADA) response directed against the Fab portion of VRC07. This ADA response appeared to decrease the production of serum VRC07 in two of these three participants. These data represent a proof of concept that adeno-associated viral vectors can durably produce biologically active, difficult-to-induce bnAbs in vivo, which could add valuable new tools to the fight against infectious diseases.


Assuntos
Infecções por HIV , HIV-1 , Adulto , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Dependovirus/genética , Anticorpos Anti-HIV , Infecções por HIV/tratamento farmacológico , Humanos
6.
Nat Commun ; 13(1): 1103, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232959

RESUMO

The human hematopoietic stem cell harbors remarkable regenerative potential that can be harnessed therapeutically. During early development, hematopoietic stem cells in the fetal liver undergo active expansion while simultaneously retaining robust engraftment capacity, yet the underlying molecular program responsible for their efficient engraftment remains unclear. Here, we profile 26,407 fetal liver cells at both the transcriptional and protein level including ~7,000 highly enriched and functional fetal liver hematopoietic stem cells to establish a detailed molecular signature of engraftment potential. Integration of transcript and linked cell surface marker expression reveals a generalizable signature defining functional fetal liver hematopoietic stem cells and allows for the stratification of enrichment strategies with high translational potential. More precisely, our integrated analysis identifies CD201 (endothelial protein C receptor (EPCR), encoded by PROCR) as a marker that can specifically enrich for engraftment potential. This comprehensive, multi-modal profiling of engraftment capacity connects a critical biological function at a key developmental timepoint with its underlying molecular drivers. As such, it serves as a useful resource for the field and forms the basis for further biological exploration of strategies to retain the engraftment potential of hematopoietic stem cells ex vivo or induce this potential during in vitro hematopoietic stem cell generation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fígado
7.
Cell Rep ; 38(12): 110561, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35303475

RESUMO

Eliciting antibodies to surface-exposed viral glycoproteins can generate protective responses that control and prevent future infections. Targeting conserved sites may reduce the likelihood of viral escape and limit the spread of related viruses with pandemic potential. Here we leverage rational immunogen design to focus humoral responses on conserved epitopes. Using glycan engineering and epitope scaffolding in boosting immunogens, we focus murine serum antibody responses to conserved receptor binding motif (RBM) and receptor binding domain (RBD) epitopes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike imprinting. Although all engineered immunogens elicit a robust SARS-CoV-2-neutralizing serum response, RBM-focusing immunogens exhibit increased potency against related sarbecoviruses, SARS-CoV, WIV1-CoV, RaTG13-CoV, and SHC014-CoV; structural characterization of representative antibodies defines a conserved epitope. RBM-focused sera confer protection against SARS-CoV-2 challenge. Thus, RBM focusing is a promising strategy to elicit breadth across emerging sarbecoviruses without compromising SARS-CoV-2 protection. These engineering strategies are adaptable to other viral glycoproteins for targeting conserved epitopes.


Assuntos
COVID-19 , Proteínas do Envelope Viral , Animais , Camundongos , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
Cancer Cell ; 40(1): 103-108.e2, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34990570

RESUMO

Patients with cancer are more likely to have impaired immune responses to SARS-CoV-2 vaccines. We study the breadth of responses against SARS-CoV-2 variants after primary vaccination in 178 patients with a variety of tumor types and after booster doses in a subset. Neutralization of alpha, beta, gamma, and delta SARS-CoV-2 variants is impaired relative to wildtype, regardless of vaccine type. Regardless of viral variant, mRNA1273 is the most immunogenic, followed by BNT162b2, and then Ad26.COV2.S. Neutralization of more variants (breadth) is associated with a greater magnitude of wildtype neutralization, and increases with time since vaccination; advancing age associates with a lower breadth. The concentrations of anti-spike protein antibody are a good surrogate for breadth (positive predictive value of =90% at >1,000 U/mL). Booster SARS-CoV-2 vaccines confer enhanced breadth. These data suggest that achieving a high antibody titer is desirable to achieve broad neutralization; a single booster dose with the current vaccines increases the breadth of responses against variants.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Neoplasias/imunologia , SARS-CoV-2/imunologia , Idoso , Envelhecimento/imunologia , Antígenos Virais/imunologia , Feminino , Humanos , Imunização Secundária , Hospedeiro Imunocomprometido , Imunogenicidade da Vacina , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Neoplasias/terapia , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral
9.
J Clin Oncol ; 40(1): 12-23, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752147

RESUMO

PURPOSE: The immunogenicity and reactogenicity of SARS-CoV-2 vaccines in patients with cancer are poorly understood. METHODS: We performed a prospective cohort study of adults with solid-organ or hematologic cancers to evaluate anti-SARS-CoV-2 immunoglobulin A/M/G spike antibodies, neutralization, and reactogenicity ≥ 7 days following two doses of mRNA-1273, BNT162b2, or one dose of Ad26.COV2.S. We analyzed responses by multivariate regression and included data from 1,638 healthy controls, previously reported, for comparison. RESULTS: Between April and July 2021, we enrolled 1,001 patients; 762 were eligible for analysis (656 had neutralization measured). mRNA-1273 was the most immunogenic (log10 geometric mean concentration [GMC] 2.9, log10 geometric mean neutralization titer [GMT] 2.3), followed by BNT162b2 (GMC 2.4; GMT 1.9) and Ad26.COV2.S (GMC 1.5; GMT 1.4; P < .001). The proportion of low neutralization (< 20% of convalescent titers) among Ad26.COV2.S recipients was 69.9%. Prior COVID-19 infection (in 7.1% of the cohort) was associated with higher responses (P < .001). Antibody titers and neutralization were quantitatively lower in patients with cancer than in comparable healthy controls, regardless of vaccine type (P < .001). Receipt of chemotherapy in the prior year or current steroids were associated with lower antibody levels and immune checkpoint blockade with higher neutralization. Systemic reactogenicity varied by vaccine and correlated with immune responses (P = .002 for concentration, P = .016 for neutralization). In 32 patients who received an additional vaccine dose, side effects were similar to prior doses, and 30 of 32 demonstrated increased antibody titers (GMC 1.05 before additional dose, 3.17 after dose). CONCLUSION: Immune responses to SARS-CoV-2 vaccines are modestly impaired in patients with cancer. These data suggest utility of antibody testing to identify patients for whom additional vaccine doses may be effective and appropriate, although larger prospective studies are needed.


Assuntos
Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/uso terapêutico , Neoplasias/imunologia , SARS-CoV-2/imunologia , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
10.
Radiother Oncol ; 166: 88-91, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838892

RESUMO

The immunogenicity of SARS-CoV-2 vaccines in cancer patients receiving radiotherapy is unknown. This prospective cohort study demonstrates that anti-SARS-CoV-2 spike antibody and neutralization titers are reduced in a subset of thoracic radiotherapy patients, possibly due to immunosuppressive conditions. Antibody testing may be useful to identify candidates for additional vaccine doses.


Assuntos
COVID-19 , Neoplasias , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Neoplasias/radioterapia , Estudos Prospectivos , SARS-CoV-2
11.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33332286

RESUMO

CIS43 is a potent neutralizing human mAb that targets a highly conserved "junctional" epitope in the Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP). Enhancing the durability of CIS43 in vivo will be important for clinical translation. Here, 2 approaches were used to improve the durability of CIS43 in vivo while maintaining potent neutralization. First, the Fc domain was modified with the LS mutations (CIS43LS) to increase CIS43 binding affinity for the neonatal Fc receptor (FcRn). CIS43LS and CIS43 showed comparable in vivo protective efficacy. CIS43LS had 9- to 13-fold increased binding affinity for human (6.2 nM versus 54.2 nM) and rhesus (25.1 nM versus 325.8 nM) FcRn at endosomal pH 6.0 compared with CIS43. Importantly, the half-life of CIS43LS in rhesus macaques increased from 22 days to 39 days compared with CIS43. The second approach for sustaining antibody levels of CIS43 in vivo is through adeno-associated virus (AAV) expression. Mice administered once with AAV-expressing CIS43 had sustained antibody levels of approximately 300 µg/mL and mediated protection against sequential malaria challenges up to 36 weeks. Based on these data, CIS43LS has advanced to phase I clinical trials, and AAV delivery provides a potential next-generation approach for malaria prevention.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Substituição de Aminoácidos , Animais , Anticorpos Anti-Idiotípicos/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacocinética , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/genética , Anticorpos Antiprotozoários/administração & dosagem , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/genética , Dependovirus/genética , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/genética , Macaca mulatta , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Proteínas de Protozoários/imunologia
12.
Immunity ; 54(2): 235-246.e5, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33357409

RESUMO

The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.


Assuntos
Células Dendríticas/imunologia , Interleucina-6/sangue , Interleucina-6/imunologia , Proteína ADAM17 , Animais , Diferenciação Celular , Imunidade Humoral , Imunoglobulina M/imunologia , Inflamação , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Interleucina-6/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmócitos/imunologia , Receptores de Interleucina-6/sangue , Receptores de Interleucina-6/imunologia , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia
13.
J Proteome Res ; 19(2): 733-743, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31913636

RESUMO

In cells, asparagine/N-linked glycans are added to glycoproteins cotranslationally, in an attachment process that supports proper folding of the nascent polypeptide. We found that following pruning of N-glycan by the amidase PNGase F, the principal influenza vaccine antigen and major viral spike protein hemagglutinin (HA) spontaneously reattached N-glycan to its de-N-glycosylated positions when the amidase was removed from solution. This reaction, which we term N-glycanation, was confirmed by site-specific analysis of HA glycoforms by mass spectrometry prior to PNGase F exposure, during exposure to PNGase F, and after amidase removal. Iterative rounds of de-N-glycosylation followed by N-glycanation could be repeated at least three times and were observed for other viral glycoproteins/vaccine antigens, including the envelope glycoprotein (Env) from HIV. Covalent N-glycan reattachment was nonenzymatic as it occurred in the presence of metal ions that inhibit PNGase F activity. Rather, N-glycanation relied on a noncovalent assembly between protein and glycan, formed in the presence of the amidase, where linearization of the glycoprotein prevented this retention and subsequent N-glycanation. This reaction suggests that under certain experimental conditions, some glycoproteins can organize self-glycan addition, highlighting a remarkable self-assembly principle that may prove useful for re-engineering therapeutic glycoproteins such as influenza HA or HIV Env, where glycan sequence and structure can markedly affect bioactivity and vaccine efficacy.


Assuntos
Vacinas contra a AIDS , Vacinas contra Influenza , Influenza Humana , Antígenos HIV , Humanos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase , Polissacarídeos
14.
PLoS One ; 14(11): e0225206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725765

RESUMO

The engineered AAV-PHP.B family of adeno-associated virus efficiently delivers genes throughout the mouse central nervous system. To guide their application across disease models, and to inspire the development of translational gene therapy vectors for targeting neurological diseases in humans, we sought to elucidate the host factors responsible for the CNS tropism of the AAV-PHP.B vectors. Leveraging CNS tropism differences across 13 mouse strains, we systematically determined a set of genetic variants that segregate with the permissivity phenotype, and rapidly identified LY6A as an essential receptor for the AAV-PHP.B vectors. Interfering with LY6A by CRISPR/Cas9-mediated Ly6a disruption or with blocking antibodies reduced transduction of mouse brain endothelial cells by AAV-PHP.eB, while ectopic expression of Ly6a increased AAV-PHP.eB transduction of HEK293T and CHO cells by 30-fold or more. Importantly, we demonstrate that this newly discovered mode of AAV binding and transduction can occur independently of other known AAV receptors. These findings illuminate the previously reported species- and strain-specific tropism characteristics of the AAV-PHP.B vectors and inform ongoing efforts to develop next-generation AAV vehicles for human CNS gene therapy.


Assuntos
Barreira Hematoencefálica/metabolismo , Técnicas de Transferência de Genes , Transdução Genética , Transgenes , Animais , Antígenos Ly/química , Antígenos Ly/genética , Encéfalo/metabolismo , Linhagem Celular , Dependovirus/genética , Variação Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Neurônios/metabolismo , Tropismo
15.
Mol Ther Methods Clin Dev ; 14: 100-112, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31334303

RESUMO

HIV-1 infection continues to be a global health challenge and a vaccine is urgently needed. Broadly neutralizing antibodies (bNAbs) are considered essential as they inhibit multiple HIV-1 strains, but they are difficult to elicit by conventional immunization. In contrast, non-neutralizing antibodies that correlated with reduced risk of infection in the RV144 HIV vaccine trial are relatively easy to induce, but responses are not durable. To overcome these obstacles, adeno-associated virus (AAV) vectors were used to provide long-term expression of antibodies targeting the V2 region of the HIV-1 envelope protein, including the potent CAP256-VRC26.25 bNAb, as well as non-neutralizing CAP228 antibodies that resemble those elicited by vaccination. AAVs mediated effective antibody expression in cell culture and immunocompetent mice. Mean concentrations of human immunoglobulin G (IgG) in mouse sera increased rapidly following a single AAV injection, reaching 8-60 µg/mL for CAP256 antibodies and 44-220 µg/mL for CAP228 antibodies over 24 weeks, but antibody concentrations varied for individual mice. Secreted antibodies collected from serum retained the expected binding and neutralizing activity. The vectors generated here are, therefore, suitable for the delivery of V2-targeting HIV antibodies, and they could be used in a vectored immunoprophylaxis (VIP) approach to sustain the level of antibody expression required to prevent HIV infection.

16.
PLoS Pathog ; 14(12): e1007395, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30517201

RESUMO

Gene based delivery of immunoglobulins promises to safely and durably provide protective immunity to individuals at risk of acquiring infectious diseases such as HIV. We used a rhesus macaque animal model to optimize delivery of naturally-arising, autologous anti-SIV neutralizing antibodies expressed by Adeno-Associated Virus 8 (AAV8) vectors. Vectored transgene expression was confirmed by quantitation of target antibody abundance in serum and mucosal surfaces. We tested the expression achieved at varying doses and numbers of injections. Expression of the transgene reached a saturation at about 2 x 10(12) AAV8 genome copies (gc) per needle-injection, a physical limitation that may not scale clinically into human trials. In contrast, expression increased proportionately with the number of injections. In terms of anti-drug immunity, anti-vector antibody responses were universally strong, while those directed against the natural transgene mAb were detected in only 20% of animals. An anti-transgene antibody response was invariably associated with loss of detectable plasma expression of the antibody. Despite having atypical glycosylation profiles, transgenes derived from AAV-directed muscle cell expression retained full functional activity, including mucosal accumulation, in vitro neutralization, and protection against repeated limiting dose SIVsmE660 swarm challenge. Our findings demonstrate feasibility of a gene therapy-based passive immunization strategy against infectious disease, and illustrate the potential for the nonhuman primate model to inform clinical AAV-based approaches to passive immunization.


Assuntos
Anticorpos Antivirais/administração & dosagem , Terapia Genética/métodos , Imunização Passiva/métodos , Vacinas contra a SAIDS , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Dependovirus , Vetores Genéticos , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia , Transgenes
17.
Retrovirology ; 15(1): 66, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285769

RESUMO

Vectored gene delivery of HIV-1 broadly neutralizing antibodies (bNAbs) using recombinant adeno-associated virus (rAAV) is a promising alternative to conventional vaccines for preventing new HIV-1 infections and for therapeutically suppressing established HIV-1 infections. Passive infusion of single bNAbs has already shown promise in initial clinical trials to temporarily decrease HIV-1 load in viremic patients, and to delay viral rebound from latent reservoirs in suppressed patients during analytical treatment interruptions of antiretroviral therapy. Long-term, continuous, systemic expression of such bNAbs could be achieved with a single injection of rAAV encoding antibody genes into muscle tissue, which would bypass the challenges of eliciting such bNAbs through traditional vaccination in naïve patients, and of life-long repeated passive transfers of such biologics for therapy. rAAV delivery of single bNAbs has already demonstrated protection from repeated HIV-1 vaginal challenge in humanized mouse models, and phase I clinical trials of this approach are underway. Selection of which individual, or combination of, bNAbs to deliver to counter pre-existing resistance and the rise of escape mutations in the virus remains a challenge, and such choices may differ depending on use of this technology for prevention versus therapy.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Dependovirus/genética , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Terapia Genética , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunização Passiva
18.
Immunol Rev ; 275(1): 324-333, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28133808

RESUMO

Broadly neutralizing antibodies (bNAbs) against human immunodeficiency virus (HIV) show great promise in HIV prevention as they are capable of potently neutralizing a considerable breadth of genetically diverse strains. Passive transfer of monoclonal bNAb proteins can confer protection in animal models of HIV infection at modest concentrations, inspiring efforts to develop an HIV vaccine capable of eliciting bNAb responses. However, these antibodies demonstrate high degrees of somatic mutation and other unique characteristics that may hinder the ability of conventional approaches to consistently and effectively produce bNAb analogs. As an alternative strategy, we and others have proposed vector-mediated gene transfer to generate long-term, systemic production of bNAbs in the absence of immunization. Herein, we review the use of adeno-associated virus (AAV) vectors for delivery of HIV bNAbs and antibody-like proteins and summarize both the advantages and disadvantages of this strategy as a method for HIV prevention.


Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Animais , Anticorpos Neutralizantes/genética , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Anticorpos Anti-HIV/genética , Infecções por HIV/prevenção & controle , Humanos , Imunização Passiva
19.
Exp Hematol ; 44(5): 422-433.e1, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26872540

RESUMO

Hematopoietic stem cells (HSC) rely on a highly regulated molecular network to balance self-renewal and lineage specification to sustain life-long hematopoiesis. Despite a plethora of studies aimed at identifying molecules governing HSC fate, our current knowledge of the genes responsible is limited. We have found insulin-like growth factor 2 (IGF2) to be expressed predominantly within long-term HSCs. This study examines IGF2 expression patterns and the effects of the gene in HSCs. Through the overexpression and knockdown of IGF2 within purified HSCs, we report that IGF2 expression increases HSC-derived multilineage colonies in vitro and enhances hematopoietic contribution in vivo on competitive bone marrow transplantation. The effects of IGF2 are mediated by direct upregulation of the CDKi p57, exclusively within long-term HSCs, via activation of the PI3K-Akt pathway. Increased expression of p57 resulted in a concomitant increase in HSCs in the G0/G1 stage of the cell cycle. Analysis of genomic DNA methylation revealed that HSCs exhibited a hypomethylated state within the promoter region of the CDKN1C (p57) gene, providing a potential mechanism for the exclusive effects of IGF2 within HSCs. Our studies indicate a novel role for IGF2 in regulating HSC cell cycle and illustrate potential novel therapeutic targets for hematologic diseases.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/genética , Células-Tronco Hematopoéticas/metabolismo , Fator de Crescimento Insulin-Like II/genética , Regulação para Cima , Animais , Ciclo Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Metilação de DNA , Citometria de Fluxo , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
20.
AIDS Res Hum Retroviruses ; 32(2): 109-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26670361

RESUMO

The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chain(null) (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , Doenças Transmissíveis/imunologia , Modelos Animais de Doenças , Síndrome da Imunodeficiência Adquirida/virologia , Animais , Doença Enxerto-Hospedeiro/imunologia , HIV-1/imunologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , National Institute of Allergy and Infectious Diseases (U.S.) , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA